La seconde est l’unité de temps du SI définie à partir de la fréquence de la radiation de transition entre deux niveaux hyperfins de l’état fondamental de l’atome de césium 133. La fréquence de cette radiation se situe dans le domaine des micro-ondes (autour de 9 GHz). Or depuis quelques années, plusieurs références de fréquence développées dans les laboratoires nationaux de métrologie du temps, fournissent des radiations dont la fréquence se situe dans le domaine du rayonnement optique.

Objectifs

Mise en oeuvre de comparaisons d'horloges optiques

 

Démonter les performances des horloges optiques afin de les intégrer dans le calcul des échelles de temps internationales

Résumé et résultats

Image
SIB-TF-04_Fig1
Schématisation des liens 2-voies pour la comparaison d’horloges par satellites.

Les références de fréquence qui émettent un rayonnement dans la bande optique atteignent désormais, et surpassent même, les performances en termes de stabilité et d’exactitude, des meilleurs étalons primaires actuels que sont les fontaines à atomes de césium ; elles ont des incertitudes relatives très inférieures à 10–16 et atteignent même moins que 10–17 pour les meilleures au monde. Ces évolutions technologiques sont telles qu’il est désormais envisagé de réviser la définition de la seconde afin de disposer d’étalons primaires de fréquence et donc de réaliser la seconde avec ces ultimes performances.

Ce projet collaboratif européen, ITOC, s’inscrit dans ce contexte, pour effectuer les travaux préalables nécessaires à la proposition d'une nouvelle définition de la seconde en apportant des données de mesure pour argumenter les choix possibles. Ces données sont obtenues en effectuant des comparaisons de fréquence des horloges fournissant un signal dans le domaine optique et ayant des incertitudes référencées à la définition actuelle de la seconde. Avant ce projet, peu de données de comparaison existaient. C’est pourquoi ce projet a pour but de mettre en oeuvre des comparaisons d'horloges optiques développées dans 5 laboratoires nationaux de métrologie européens dont le LNE-SYRTE. Le projet européen est coordonné par le NPL (UK) et a débuté en mai 2013.

L’objectif était donc de comparer ces références de fréquences potentielles de telle sorte que seule la limite de comparaison soit l’exactitude des horloges elles-mêmes, en utilisant diverses techniques de comparaison : il y a des comparaisons locales dans un laboratoire (directes entre horloges de même nature ou à l'aide de peignes de fréquence) et des comparaisons distantes entre laboratoires (horloge transportable, liens optiques fibrés ou liens satellitaires à bande passante large – Two Way Satellite Time and Frequency Transfer, TWSTFT).

Dans le cadre de ce projet, les participants ont effectué des mesures de fréquence absolue de leurs horloges optiques à l'aide de peignes de fréquence et de fontaines atomiques. Ils ont évalués complètement tous les effets relativistes influençant les comparaisons de temps et de fréquence entre les horloges optiques avec une exactitude de l'ordre de 10-18, en établissant une connexion avec les techniques géodésiques classiques (nivellement géométrique, modèle de champ gravitationnel à haute résolution, mesures GNSS…). La possibilité d'utiliser des horloges optiques transportables fonctionnant en continu a été étudiée pour la comparaison des horloges à distance. Une expérience a été effectuée pour mesurer une grande différence de potentiel de gravité en utilisant des horloges optiques. Le consortium de laboratoires a effectué une analyse du programme de comparaison afin de vérifier la cohérence des mesures et obtenir des valeurs optimisées pour la fréquence de chaque transition d'horloge par rapport à la définition courante de la seconde SI. Il a également envisagé les facteurs importants influençant l'utilisation des horloges optiques en tant que représentations secondaires de la seconde pour le pilotage du temps atomique international (TAI) et du temps universel coordonné (UTC).

Image
SIB-TF-04_Fig2
Fig. 1 : Types d’horloges opérationnelles dans différents laboratoires nationaux européens : MIKES (Finlande), INRIM (Italie), NPL (Royaume-Unis), LNE-SYRTE (France).

En tant que participant au projet ITOC, le LNE-SYRTE a été fortement impliqué dans :

  • La comparaison des horloges optiques au sein du laboratoire, avec en particulier la mesure directe du rapport de fréquence optique 199Hg/87Sr avec une inexactitude de 1,8×10–16 ;
  • La mise en œuvre d'un moyen de transfert de fréquence à deux voies satellitaire (TWSTFT) large bande. Une unique campagne a été organisée en juin 2015 pour effectuer la plus grande et première comparaison d'horloges optiques à distance, avec des incertitudes de quelques 10-16. Il a été montré que la technique GPS-IPPP, introduite récemment, présente une performance similaire, en stabilité de fréquence, à celle du TWSTFT large bande mais avec un coût opérationnel considérablement réduit ;
  • Des mesures absolues de fréquences optiques au laboratoire : strontium/césium et mercure/césium à la limite d’exactitude des fontaines (2,8×10-16 pour Sr/Cs), et également stromtium/rubidium et mercure/rubidium, à un niveau similaire ;
  • Pilotage du lot de travail du projet « Échelles de temps relativistes et géodésie » ;
  • Campagne de nivellement et GNSS au sein de l'Observatoire de Paris, afin de déterminer, avec la plus grande exactitude possible, les corrections de décalage gravitationnel à appliquer aux horloges atomiques lors de leurs comparaisons locales et distantes, ainsi que pour leur contribution aux échelles de temps internationales ;
  • Modélisation relativiste du transfert de temps-fréquence par fibre optique, avec une exactitude relative inférieure à 10–18 ;
  • Évaluation de la correction relativiste à appliquer aux comparaisons par TWSTFT, en prenant en compte le mouvement résiduel du satellite dans le repère terrestre ;
  • Collaboration étroite avec l’Université de Hanovre (LUH) pour l'élaboration de méthodes et de conventions pour la mesure et la définition des corrections relativistes à appliquer aux horloges atomiques dans le cadre des syntonisations d'horloges et pour la fabrication d'échelles de temps internationales.

La réunion finale du projet européen ITOC a permis de partager les résultats remarquables obtenus dans le cadre de cette collaboration. Elle a eu lieu le 8 avril 2016 à l’University of York (UK) en association avec la conférence EFTF de 2016.

 

Site internet du projet :

http://projects.npl.co.uk/itoc/

Impacts scientifiques et industriels

  • Résultats de comparaisons d’horloges optiques
  • Intégration des horloges optiques dans le calcul des échelles de temps internationales (TAI)
  • Redéfinition de la seconde
  • Contribution à la mission ACES de l’ESA

Publications et communications

MARGOLIS H.S., GODUN R.M., GILL P., JOHNSON L.A.M., SHEMAR S.L., WHIBBERLEY P.B., CALONICO D., LEVI F., LORINI L., PIZZOCARO M., DELVA P., BIZE S., ACHKAR J., DENKER H., TIMMEN L., VOIGT C., FALKE S., PIESTER D., LISDAT C., STERR U., VOGT S., WEYERS S., GERSL J., LINDVALL T. et MERIMAA M., International timescales with optical clocks (ITOC)”, Proceedings of the 2013 Joint European Frequency and Time Forum and International Frequency Control Symposium, 2013, 908–911.

GERŠL J., DELVA P. et WOLF P., Relativistic corrections for time and frequency transfer in optical fibres”, Metrologia, 52, 2015, 552–564.

ABGRALL M., CHUPIN B., DE SARLO L., GUÉNA J., LAURENT P., LE COQ Y., LE TARGAT R., LODEWYCK J., LOURS M., ROSENBUSCH P., ROVERA G. D. ET BIZE S., Atomic fountains and optical clocks at SYRTE: Status and perspectives”, Comptes Rendus de Physique, 16, 461–470, 2015.

DE SARLO L., FAVIER M., TYUMENEV R. AND BIZE S., A mercury optical lattice clock at LNE-SYRTE", Journal of Physics: Conference Series, 723, 2016, 012017.

LISDAT C., GROSCHE G., QUINTIN N., SHI C., RAUPACH S.M.F., GREBING C., NICOLODI D., STEFANI F., AL-MASOUDI A., DÔRSCHER S., HÄFNER S., ROBYR J.-L., CHIODO N., BILICKI S., BOOKJANS E., KOCZWARA A., KOKE S., KUHL A., WIOTTA F., MEYNADIER F., CAMISARD E., ABGRALL M., LOURS M., LEGERO T., SCHNATZ H., STERR U., DENKER H., CHARDONNET C., LE COQ Y., SANTARELLI G., AMY-KLEIN A., LE TARGAT R., LODEWYCK J., LOPEZ O. et POTTIE P.-E., A clock network for geodesy and fundamental science, 2015, arXiv :1511.07735.

TYUMENEV R., FAVIER M., BILICKI S., BOOKJANS E., LE TARGAT R., LODEWYCK J., NICOLODI D., LE COQ Y., ABGRALL M., GUÉNA J., DE SARLO L. et BIZE S., “Comparing a mercury optical lattice clock with microwave and optical frequency standards”, 2016, arXiv : 1603.02026.

LODEWYCK J., BILICKI S., BOOKJANS E., ROBYR J.-L., SHI C., VALLET G., LE TARGAT R., NICOLODI D., LE COQ Y., GUÉNA J., ABGRALL M., ROSENBUSCH P. et BIZE S., “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock”, 2016, arXiv : 1605.03878.

Partenaires

  • NPL (UK),
  • CMI (CZ),
  • INRIM (IT), 
  • VTT (FI),
  • PTB (DE),
  • LUH (DE).