Les protocoles de traitement par radiothérapie évoluent, d’une part, vers des tailles de champs d’irradiation de plus en plus petites pour se conformer au mieux au volume de la tumeur tout en sauvegardant les tissus sains environnants et, d’autre part, vers l’hypo-fractionnement, c’est-à-dire l’administration d’une dose de rayonnements plus importante délivrée en un nombre de fractions réduit (le débit de dose pouvant atteindre 12 Gy/min). Ces modalités de traitement réalisées avec de nouvelles machines sont rassemblées sous l’appellation de radiothérapie stéréotaxique. Ces nouvelles techniques de traitement nécessitent la mise en place de nouvelles références métrologiques. Le LNE-LNHB a proposé de remplacer la dose absorbée en un point (qui est la référence utilisée aujourd’hui dans les protocoles internationaux) par le produit dose-surface, qui est une alternative plus adaptée aux conditions stéréotaxiques qui impliquent des faisceaux de petite taille.

Objectifs

Mise au point d’un protocole de mesure des caractéristiques dosimétriques « vraies » des faisceaux de photons des accélérateurs médicaux incluant les conditions stéréotaxiques;

Promotion, pour les champs de petites tailles, de l'utilisation du produit dose-surface afin d'améliorer la précision dosimétrique des traitements tout en respectant les procédures existantes adaptées aux machines commercialement disponibles.

Mise sur le marché d’une nouvelle classe de détecteurs pour la mesure du produit dose-surface.

Contexte et Résultats

Contexte

Les protocoles de traitement par radiothérapie stéréotaxique présentent des débits de dose particulièrement importants et des tailles des champs d'irradiation particulièrement petites afin de se conformer au mieux au volume de la tumeur tout en sauvegardant au mieux les tissus sains environnants. L’utilisation de ces nouvelles techniques d'irradiation conduit à s'éloigner significativement des conditions d'étalonnage des dosimètres proposées dans les protocoles internationaux ou à introduire des corrections importantes en termes d’incertitudes. Dans ces conditions, de bonnes mesures avec un dosimètre conventionnel (positionnement délicat) ainsi que la bonne relation entre ce qui est mesuré par le dosimètre et la dose dans l’eau en un point (variation du coefficient d’étalonnage), deviennent difficiles à obtenir.

Le Produit dose-surface

La recherche d’une mesure de dose en un point pour des faisceaux inférieurs à 2 cm de côté devient discutable au vu de la forme des profils de dose. Contrairement aux champs plus larges qui présentent une zone centrale relativement homogène, les profils en petits faisceaux ont une forme très pentue avec des gradients de dose importants. Dès lors peut se poser la question de la définition de la dose « en un point » en petits champs, où la dimension du détecteur utilisé est critique et va conditionner cette définition. L’approche proposée par le LNE-LNHB consiste à utiliser des dosimètres plus grands que la section du faisceau. Cette vision nécessite l’introduction d’une autre grandeur dosimétrique : le Produit Dose-Surface (« Dose Area Product » ou DAP en anglais), s’exprimant en Gy.cm². La surface d’intérêt du DAP est la surface sensible du dosimètre (disque de 30 mm de diamètre). Cette approche est illustrée sur la figure suivante avec des champs d’irradiation de 5 mm et 15 mm de côté.

Image
Illustration PDS
A gauche, approche DAP, en opposition à l’approche classique de dose en un point, à droite.

 Résultats et perspectives

L’enjeu de ce projet était de progresser en direction de l'utilisation en clinique du produit dose-surface en mettant au point une procédure de transfert de cette référence reposant sur la conversion du produit dose-surface en dose en un point.


Pour cela, trois chambres d’ionisation plates de même surface sensible que le calorimètre graphite de grande section du LNE-LNHB ont été construites, et leur coefficient d’étalonnage en terme de produit dose-surface a été établi, à partir de mesures calorimétriques dans le faisceau de photons de 6 MV FFF de l’accélérateur TrueBeam de la plateforme Doseo pour un ensemble de petits champs circulaires et carrés, avec une incertitude-type inférieure à 0.7 %. Les trois chambres présentent le même comportement, leur coefficient d’étalonnage est indépendant de la forme et augmente légèrement avec la taille de champ de façon linéaire, de l’ordre de 1.7 % en moyenne.
 

La conversion du produit dose-surface en dose en un point repose sur la détermination du facteur de correction de profil kprof. Ce facteur peut être calculé à partir de mesures de profils à une dimension ou à partir d’une cartographie à deux dimensions de la distribution de dose absorbée du faisceau. Dans le premier cas, un ensemble de détecteurs couramment utilisés pour la mesure de profils en petits champs (microdiamant et diodes) a été utilisé. Pour le second cas, le LNE-LNHB a développé un nouveau système de lecture des films radiochromiques avec des performances largement supérieures à celles des scanners photographiques utilisés habituellement.


La comparaison des FOC obtenus selon les différentes approches a montré une grande disparité entre l’approche classique et l’approche de dose absorbée en un point déduite du DAP. Les deux approches sont incompatibles, même en tenant compte des incertitudes connues. Cette incompatibilité est essentiellement expliquée par la très grande sensibilité de la correction de profil kprof à la qualité de mesure des profils, aussi bien à une qu’à deux dimensions. Ainsi, l’ensemble des détecteurs ponctuels utilisés pour déterminer ce facteur de correction renvoit une mesure de profils différente, et ce d’autant plus que le champ est très petit, sans qu’il soit possible d’établir la justesse d’un détecteur plutôt qu’un autre. En considérant l’absence de détecteur ponctuel adapté, la variabilité intra/inter-détecteurs et l’approximation résultante de l’information partielle obtenue avec les profils, il semble inadéquat d’utiliser les mesures à une dimension pour le calcul de la correction de profil. Les films radiochromiques, associés au nouveau système de lecture mis au point au cours de ce projet, se présentent comme le dosimètre idéal avec la mesure directe d’une cartographie à deux dimensions permettant de calculer de façon explicite la correction de profil. Néanmoins, la contribution additionnelle du rayonnement diffusé hors de l’axe du faisceau et le comportement mal connu du film aux très faibles doses, largement mises en jeu ici, ont montré les limites d’utilisation de ce dosimètre pour cette application.


Afin de profiter pleinement des références primaires établies en terme de produit dose-surface, la solution est de pouvoir directement intégrer et exploiter cette grandeur dans les TPS pour les FOC. L’incertitude en serait considérablement réduite par rapport à l’approche classique, en supprimant d’une part l’incertitude liée au centrage du détecteur, et en s’affranchissant d’autre part de l’utilisation de facteurs de correction dont la mise en oeuvre est discutable et les incertitudes associées sujettes à caution.

Impacts scientifiques et industriels

Ce projet vise à faire évoluer la chaîne de traçabilité métrologique pour les doses administrées aux patients en radiothérapie externe. 

Publications et communications

IAEA 2000 Absorbed dose determination in external beam radiotherapy IAEA Technical Report Series No. 398 (Vienna: AIEA).

IAEA 2017 Dosimetry of small static fields used in external beam radiotherapy: an IAEA-AAPM International Code of Practice for reference and relative dose determination IAEA Technical Report Series No. 483 (Vienna: IAEA).

Thèse de doctorat en physique par Stéphane Dufreneix « Établissement de références dosimétriques dans les faisceaux de rayons X de hautes énergies et de très petites sections (< 1 cm2) pour la radiothérapie » Université Paris sud (2014).

S. Dufreneix, A. Ostrowsky, B. Rapp, J. Daures, J.M. Bordy 2016 “Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field” Med. Phys. 43 4085.

S. Dufreneix, A. Ostrowsky, M. Le Roy, L. Sommier, J. Gouriou, F. Delaunay, B. Rapp, J. Daures, J.M. Bordy 2016 “Using a dose-area product for absolute measurements in small fields: a feasability study”, Phys. Med. Biol. 61 650.

M. Pimpinella, C. Caporalia, A.S. Guerra, L. Silvi, V. De Coste, A. Petrucci, F. Delaunay, S. Dufreneix, J. Gouriou, A. Ostrowsky, B. Rapp, J.M. Bordy, J. Daures, M. Le Roy, L. Sommier, D. Vermesse, 2018 “Feasability of using a dose-area product ratio as a beam quality specifier for photon beams with small field sizes” Physica Medica 45 106.

Jurczak J, Rapp B, Dufreneix S, Gouriou J, Delaunay F, Bordy J-M. 84 Towards a new dosimetry reference quantity for stereotactic radiotherapy: The dose area product. Phys Medica Eur J Med Phys 2019;68:51.

Jurczak J, Rapp B, Delaunay F, Gouriou J, Dufreneix S, Bordy J-M. Dose Area Product primary standards established by grahite calorimetry at the LNE-LNHB for small radiation fields in radiotherapy. Physica Medica. Acceptée.

Jurczak J, Produit dose-surface pour la radiothérapie : application aux protocoles de traitements stéréotaxiques, Thèse de doctorat de l'université Paris-Saclay (2022).

Partenaires

Le CEA a soutenu ce projet au travers du financement d’une thèse (2019-2021) labélisée "sujet phare" par le Haut-Commissaire.

Collaboration avec l’Institut de Cancérologie de l'Ouest à Angers pour le test et la mise au point du protocole de conversion entre la dose absorbée en un point et le produit dose-surface.