Le laboratoire de métrologie électrique haute tension du LNE est très engagé dans ce projet européen JRP HV-com2. Il s’agit pour les métrologues d’apporter toutes leurs compétences pour améliorer les essais d’équipements haute tension des réseaux électriques. En particulier, ce projet vise à développer la normalisation d'essais typiques à haute tension au cours desquels des impulsions de tension sont superposées aux tensions continues ou alternatives, comme cela peut se produire sur le réseau de transport d’électricité lors d’un choc de foudre ou lors de la connexion d’un élément au réseau. Pour ces essais, des signaux de tension composites ou combinées sont utilisés et doivent être mesurés (forme et amplitude). Au cours de ce JRP, des systèmes de mesure de ces signaux sont développés pour assurer leur traçabilité au SI et, à l'issue du projet, des services d'étalonnage fiables seront proposés pour les instruments de mesure utilisés pour acquérir ces signaux composites ou combinés. De plus des procédures de mesure seront développées et proposées à l'IEC pour faire évoluer les normes existantes pour les d’essais à haute tension d’équipements électriques.

Objectifs

Déterminer de façon fiable les interactions entre des impulsions de tension et les hautes tensions continues (HVDC) ou alternatives (HVAC) et les effets néfastes dus à cette combinaison de tensions sur les essais d’équipements haute tension.

Déterminer les performances métrologiques des diviseurs de tension, des échantillonneurs et des algorithmes de calcul pendant les essais mettant en œuvre des tensions composites ou combinées.

Développer la traçabilité des mesures de ces signaux de tension de forme d’onde composite et combinée par des systèmes de référence primaire et des services d’étalonnage, avec une incertitude cible de 2 % pour l’amplitude de tension.

Contribuer à la révision des normes IEC-60060-1&2 et IEC 61083-1&2 en fournissant les données, les méthodes et les recommandations nécessaires au comité technique IEC-TC42 « High voltage and high-current test techniques ».

Résumé et premiers résultats

Image
JRP EMPIR HN-com2
JRP EMPIR HV-com2

La fiabilité des réseaux électriques à haute tension et leur capacité à supporter des courants issus de sources d’énergies renouvelables dépendent essentiellement de la capacité à réaliser des essais pertinents sur les composants constituant ces réseaux de transport de l’énergie électrique. L’un de ces essais consiste à soumettre les composants à tester à des signaux de tension de forme d’onde composite et combinée. Mais la traçabilité des mesures de ces signaux déformés de haute tension est mal établie, ce qui pourrait entraîner des résultats d’essais incorrects.

Les signaux de tension à mesurer sont des tensions combinées et composites, où les ondes de choc de foudre 1,2 µs / 50 μs ou de manœuvre 250 µs / 2500 μs sont superposées aux hautes tensions alternatives ou continues.

Une tension combinée apparaît entre deux bornes d’un composant à trois bornes lorsque l’alimentation du composant est assurée par deux tensions différentes générées par deux sources de tension distinctes et appliquées sur deux bornes du composant à tester. Par exemple, une tension combinée est appliquée dans les essais d’isolation entre deux phases de matériels alimentés en triphasé, ou dans les essais d’isolation de matériels de commutation, de systèmes haute tension isolés avec du gaz (GIS), de lignes électriques à courant continu haute tension, des sectionneurs, des disjoncteurs, etc. En raison du couplage des deux sources d’alimentation, les formes et les amplitudes des deux tensions diffèrent de celles générées par les sources utilisées séparément. Une mesure de la tension combinée avec une méthode habituelle est difficile car il n’y a pas de potentiel de terre impliqué. Dans ce cas il est possible de calculer la tension combinée à partir de la mesure des deux composantes de tension. Mais dans certains essais, les phénomènes induits par l’onde combinée sur les systèmes à tester, ceux isolés au gaz notamment, peuvent créer une tension de claquage réduite dont les limites autorisées doivent être spécifiées dans la norme d’essai.

La tension composite est, quant à elle, la superposition de deux tensions d’essai différentes générées par la connexion de deux sources de tensions distinctes et appliquées sur une même borne du dispositif à tester. Chaque connexion des sources de tension dans le circuit d’essai dépend de l’élément qui couple une tension et bloque l’autre. Il peut également y avoir une interaction directe entre les sources connectées ensemble. Cela signifie que, en fonction de la nature du couplage et du blocage, les contraintes exercées sur le dispositif à tester et sur les sources peuvent varier. Les essais en tension composée sont typiquement adaptés pour les câbles haute tension alternative (HVAC) ou des câbles haute tension continue (HVDC). Les essais en tension composite avec des ondes de choc de foudre superposées aux hautes tensions continues sont aisés à réaliser tandis que les essais où les ondes de manœuvre sont superposées aux hautes tensions alternatives sont mal définis dans la norme actuelle, notamment concernant les paramètres temporels du signal de tension à appliquer.

En raison d’un manque de traçabilité des mesures de haute tension électrique (continue ou alternative) en présence de signaux perturbateurs (chocs de foudre ou ondes de manœuvre), des laboratoires nationaux de métrologie européens et des industriels de l’énergie électrique se sont regroupés pour élaborer ce projet européen (JRP HV-com2) afin de contribuer à faire évoluer la normalisation des essais en haute tension. Il s’agit principalement des normes (IEC 60060 et IEC 61083-1&2) élaborées par le comité technique TC42 de l’IEC (Commission électrotechnique internationale). L’objectif est de développer une infrastructure métrologique spécifique adaptée à la mesure des hautes tensions composites et combinées. Cela passe par le développement de systèmes de mesure traçables, de services d’étalonnage adaptés à des formes d’onde composites et combinées, et par l’étude de l’influence des tensions impulsionnelles sur la mesure des hautes tensions continues (HVDC) ou alternatives (HVAC).

Le programme d’actions de ce JRP HV-com2 a été réparti entre les 12 partenaires européens et il est coordonné par le PTB (Allemagne). Le projet est structuré en 3 lots de travail technique et 2 lots de management (WP4) et de diffusion des connaissances (WP5) :

Pour en savoir plus sur le JRP HV-com2, sa structure, ses partenaires, ses objectifs et ses résultats : https://www.ptb.de/empir2020/hv-com2.

Le LNE participe à tous les lots de travaux et coordonne le WP1 dont la finalité est de déterminer de manière fiable la mesure des hautes tensions continues (HVDC) ou alternatives (HVAC) lorsqu’il existe des impulsions de tension additionnelles et de déterminer les effets néfastes de ces impulsions sur les mesures et les composants à tester. Les travaux portent aussi bien sur les procédures d’évaluation et de mesure que sur l’instrumentation de mesure, afin de proposer in fine une évolution des normes d’essais des systèmes « haute tension » qui tiennent compte des formes complexes des signaux réels auxquels ils peuvent être soumis.

Il s’agit notamment pour le LNE de réaliser l’infrastructure métrologique pour l’étalonnage des instruments d’acquisition utilisés pour les mesures de tensions combinées et composites jusqu’à 1 kV, et en particulier de concevoir un calibrateur pour l’étalonnage des numériseurs utilisés pour mesurer les impulsions de tension.

L'approche choisie par le LNE est fondée sur l'utilisation d'amplificateurs de haute tension fonctionnant à haute vitesse. Lorsqu'ils sont connectés à un convertisseur numérique-analogique à haute vitesse, il est possible de générer n'importe quelle forme d'onde (signaux programmés) adaptée à la génération de tensions combinée ou composite. Le LNE a conçu et réalisé un calibrateur fonctionnant sur ce principe. Cet équipement fonctionne comme un amplificateur linéaire de haute tension capable de convertir des signaux de forme quelconque de basse tension en signaux de tensions plus élevées jusqu’à 900 V crête sur une durée de montée supérieure à 1 µs, avec une large bande passante et un gain de 150. Les résultats de test de performance du calibrateur basse tension sont prometteurs et sa traçabilité au SI est en cours d’étude.

Par ailleurs quatre amplificateurs aux caractéristiques différentes, trois de commerce et celui fabriqué par le LNE, ont été testés et étudiés. Les résultats comparés montrent que cette méthode peut atteindre des performances métrologiques élevées, au moins équivalentes à celles des calibrateurs traditionnels, qui nécessitent généralement un bloc électrique séparé pour toute forme d'onde supplémentaire. L'avantage de l'utilisation d'un amplificateur haute tension est sa flexibilité pour générer, en un seul bloc, toute forme d'onde avec un temps de montée supérieur à une microseconde. Cette nouvelle méthode, relativement moins couteuse que les calibrateurs traditionnels, révèle un intérêt certain dans ce domaine de mesure des hautes tensions électriques.

Publications et communications

SAADEDDINE H., AGAZAR M. et MEISNER J., “Reference calibrator for combined and composite high voltage impulse tests”, ISH 2021 (International Symposium on High Voltage Engineering), Xi’an, China, 21-25 Nov. 2021.

AGAZAR M. et SAADEDDINE H., “The usage of voltage amplifiers for reference impulse voltage calibrators up to 1 kV”, Measurement Science and Technologies (MST journal), à paraître.

AGAZAR M. et SAADEDDINE H., “Studying the use of voltage amplifiers to generate microsecond rise-time impulses up to 900 V”, 20e Congrès international de métrologie (CIM 2021), Lyon, France, 7-9 sept. 2021.

SAADEDDINE H. et AGAZAR M., “Support for standardisation of high voltage testing with composite and combined wave shapes”, 20e Congrès international de métrologie (CIM 2021), Lyon, France, 7-9 sept. 2021.

MEISNER J., GOCKENBACH E., SAADEDDINE H. et al., “Support for standardisation of high voltage testing with composite and combined wave shapes”, VDE High Voltage Technology 2020, ETG-Symposium, online 9-11 Nov. 2020.

Partenaires

Les partenaires du LNE dans ce projet européen (JRP) sont :

  • PTB (Physikalisch-Technische Bundesanstalt), Allemagne
  • FFII (Fundación para el Fomento de la Innovación Industrial), Espagne
  • INRIM (Istituto Nazionale di Ricerca Metrologica), Italie
  • RISE (Research Institute of Sweden), Suède
  • TUBITAK (Turkiye Bilimsel ve Teknolojik Arastirma Kurumu), Turquie
  • VTT MIKES (Technical Research Centre of Finland), Finlande
  • AME (Accessori Macchine Elettriche), Italie
  • TAU (Tampereen korkeakoulusäätiö), Finlande
  • TUD (Technische Universität Dresden), Allemagne
  • TUG (Technische Universitaet Graz), Autriche
  • Haefely, Suisse

Impacts attendus du JRP

  • augmentation de la qualité de fabrication d’éléments de réseau électrique haute tension
  • amélioration de la pertinence des essais de dispositifs à haute tension
  • amélioration de la qualité des normes d’essais haute tension
  • nouvelles références et possibilités d’étalonnage pour les mesures de signaux déformés de haute tension.