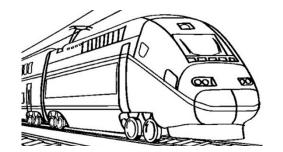


Laboratory calibration of EMF under AC distorted signals

Context – setup – algorithm

Daniela Istrate (LNE)


daniela.istrate@lne.fr

Context

Directive n° 2008/57/EC on the interoperability of the rail system within the European Community published in June 2008.

To establish a single European railway area, energy billings shall be computed on the actual consumed energy.

All trains shall be equipped with an energy measurement function (EMF). It's accuracy shall be assessed and periodically re-verified (EN 50463-2).

LNE developed a reference setup for the calibration of EMF working under AC distorted waveforms.

LNE Setup presentation

Watch the video included :

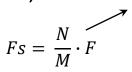
Directive n° 2008/57/EC on the interoperability of the rail system within the Community published in June 2008.

Context

To establish a single European railway area, energy billings shall be computed on the actual consumed energy.

All trains shall be equipped with an energy measurement function (EMF). It's accuracy shall be assessed and periodically re-verified (EN 50463-2).

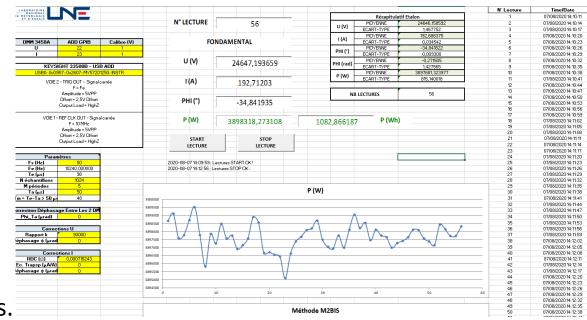
LNE developed a reference setup for the calibration of EMF working under AC distorted waveforms.



LNE Software

The sampling frequency is calculated according to:

- the fundamental frequency of the signal to be measured, F,
- the number of points, N,
- the periods to be recorded, M

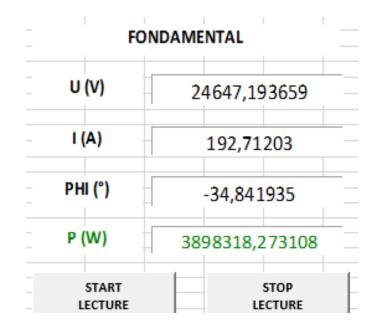


1024 samples

5 cycles

The LNE software :

- drives the multimeters,
- pilots the data acquisition,
- treats data,
- performs the mathematical analysis and computations.

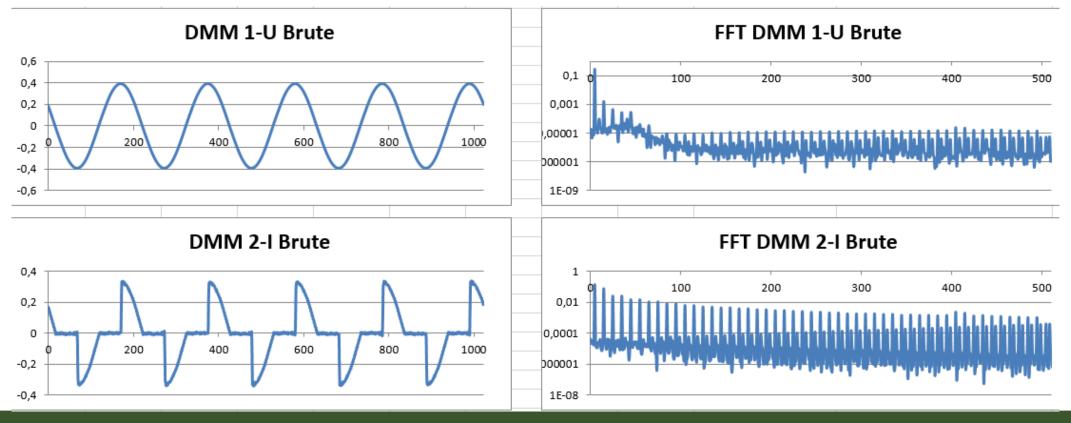


LNE Software

The outputs of the LNE reference system are:

- the RMS values of voltage, respectively current and their standard deviations,
- the phase displacement between their fundamental components,
- the active power and the associated standard deviation,

Récapitulatif Etalon				
	MOYENNE	24646,158592		
U (V)	ECART-TYPE	1,467752		
1(0)	MOYENNE	192,688375		
I (A)	ECART-TYPE	0,034542		
PHI (°)	MOYENNE	-34,841822		
	ECART-TYPE	0,009300		
	MOYENNE	-0,271505		
PHI (rad)	ECART-TYPE	1,427565		
	MOYENNE	3897681,323977		
P (W)	ECART-TYPE	815,140018		
NB LECTURES 56		56		



LNE Software

The outputs of the LNE reference system are:

- the Fast Fourier Transform of voltage, respectively current waveforms.

Calibration results

The values determined by the reference measurement system will be compared to the values given by the Device Under Test.

90° phase-fired current waveform	Reference	DUT	
U (V)	24646.16	2535(ס
I(A)	192.69	228.16	5
PHI(°)	-34.84		-
P (Wh)	1082.69	1100.57	7
P (W)	3897681.32	3962048.4	1
Corrections P (%) with respect to sin	-0.	.20 O K	

Device initially designed to work at 50 Hz !

The relative value of the expanded uncertainty (for a coverage probability of 95,45%, coverage factor = 2) of **active power measurement for LNE's reference system** is

0.1% for sinusoidal signals of high amplitudes

(25 kV, 500 A).

0.5% for phase fired waveform.

Publications

November 2020 DOI: 10.3390/s20216301

MDPI		Journals	Information	Author Services	Initiatives	About		Sign In / Sign U	p Submit
Search for Articles:	Title / Keyword	At	uthor / Affiliation	Sensors		All Article Types	T.	Search	Advanced
Journals / Sensors / Volume 2	10 / Jacua 21 / 10 2200/c20	216201							

sensors	Open Access Article
Submit to this Journal	Laboratory Calibration of Energy Measurement
Review for this Journal	Systems (EMS) under AC Distorted Waveforms
Edit a Special Issue	by 🎡 Daniela Istrate ^{1, +} 🖾 🥥 🕐 Abderrahim Khamlichi ² 🖾 🕐 Soureche Soccalingame ¹ 🖾 🕐 Jorge Rovira ² 🖾 🧿 🕐 Dominique Fortune ¹ 🖾 🕐 Martin Sira ³ 💆 🕐 Pascual Simon ² 🖾 and 🕐 Fernando Garnacho ² 🖾
Article Menu	 Electrical Metrology Department, LNE, 78197 Trappes CEDEX, France FFII-LCOE, Eric Kandel Street 1, Getafe, 28906 Madrid, Spain
Article Overview	 ³ Department of Primary Metrology of Electrical Quantities, Czech Metrology Institute, Okružní 772/31, 638 00 Brno, Czech Republic
 Abstract 	* Author to whom correspondence should be addressed.
 Supplementary Material 	Sensors 2020, 20(21), 6301; https://doi.org/10.3390/s20216301
 Open Access and Permissions 	Received: 28 September 2020 / Revised: 2 November 2020 / Accepted: 3 November 2020 / Published: 5 November 2020
 Share and Cite 	
 Article Metrics 	(This article belongs to the Special Issue Advanced Transducers and Systems for Voltage and Current Measurement)
 Related Articles 	View Full-Text Download PDF Browse Figures Cite This Paper
 Addition Designation 	

Thank you for your attention.