En métrologie des rayonnements ionisants, l’unité becquerel, unité dérivée du SI correspondant au nombre moyen de désintégrations radioactives par seconde, est obtenue par des méthodes primaires de mesure de l'activité. Une particularité du becquerel est que des étalons primaires doivent être réalisés pour chaque radionucléide individuellement, ce qui nécessite une certaine connaissance préexistante : schéma de désintégration, données nucléaires associées et données liées à la relaxation atomique subséquente.

Dans le cas des mesures primaires d’activité des émetteurs bêta purs avec la technique de la scintillation liquide, la précision dépend directement de la connaissance du rendement de détection. Or, la détermination du rendement de détection requiert la probabilité d’émission des particules bêta aux différentes énergies, c’est-à-dire la forme des spectres d’émission bêta. Par conséquent, la détermination précise de ces formes de spectres bêta est fondamentale pour la réalisation du becquerel des émetteurs bêta purs.

Objectifs

Développer une modélisation générale des transitions interdites dans les désintégrations par interaction faible et d’en quantifier la précision par une comparaison avec de nouvelles mesures. 

 Amélioration des prédictions théoriques.

Evolution d’un dispositif expérimental existant pour étendre les possibilités de mesure à un plus grand nombre de transitions.

Transfert de ces résultats aux utilisateurs à travers les données atomiques et nucléaires évaluées.

Résumé et premiers résultats

L’étude des spectres bêta, tant expérimentale que théorique, a joué un rôle majeur dans notre compréhension des interactions fondamentales au cours du XXème siècle. Les recherches ont été actives sur cette thématique jusque dans les années 1970, puis sont passées de mode. Les installations de mesure ont été démantelées et les codes de calculs, lorsqu’ils n’ont pas disparu avec leurs auteurs, sont pour la plupart restés inaccessibles. Cette thématique a connu un regain d’intérêt ces dix dernières années. La précision des simulations Monte Carlo, associée aux puissances de calcul toujours plus importantes, permet d’envisager des études précises pour caractériser un système de détection, évaluer l’impact d’un dépôt d’énergie au niveau cellulaire, ou encore déterminer la contribution de la radioactivité naturelle à des mesures à bas niveau de bruit. Ces simulations sont relativement faciles d’accès et sont de ce fait mises en oeuvre au sein de nombreuses communautés scientifiques. Elles restent cependant tributaires des données de désintégration atomiques et nucléaires. La question de la qualité, de la précision et de la complétude de ces données se fait donc de plus en plus pressante. Dans ce contexte, les informations liées aux transitions par interaction faible, désintégrations bêta comme captures électroniques, sont apparues incomplètes et insuffisamment précises.

Le LNE-LNHB a acquis ces dernières années une forte expertise dans l’étude des spectres bêta, tant expérimentale que théorique. L’un des résultats majeurs obtenus est le code de calcul BetaShape, qui a été mis à la disposition des utilisateurs et qui a déjà contribué à améliorer les données évaluées par le LNE-LNHB. L’étude des effets atomiques à basse énergie, considérés jusqu’alors comme négligeables, a permis de réaliser des prédictions théoriques en excellent accord avec les spectres de haute précision mesurés par calorimétrie métallique magnétique. L’impact important d’une description précise des spectres en énergie des particules bêta sur les mesures d’activité primaires par scintillation liquide a été clairement démontré. Des discussions sont en cours au niveau international pour adopter ces prédictions théoriques lors des futures intercomparaisons organisées par le BIPM.

Le degré de complexité nécessaire à des prédictions fiables n’est pas identique pour tous les types de transitions. Les transitions interdites sont particulièrement difficiles à modéliser car elles sont très sensibles aux structures atomiques et nucléaires des radionucléides. De plus, inclure ces structures dans les modèles est indispensable même pour les transitions permises si une précision de l’ordre de 1 % est recherchée. L’objectif principal de ce projet est de développer une modélisation générale des transitions interdites dans les désintégrations par interaction faible et d’en quantifier la précision par une comparaison avec de nouvelles mesures.

Impacts scientifiques et industriels

  • Une meilleure connaissance des transitions bêta et des captures électroniques permet d’améliorer la réalisation de l'unité becquerel en métrologie des rayonnements ionisants, et plus particulièrement dans le cas des radionucléides émetteurs bêta pur.
  • Ce projet contribue à réduire les incertitudes sur les données relatives à la désintégration nucléaire et à établir des étalons d'activité avec une précision et une exactitude accrues, nécessaires pour les applications industrielles. Des données améliorées sur la désintégration des radionucléides émetteurs bêta sont importantes dans l'industrie nucléaire pour le calcul de la puissance résiduelle des réacteurs à l'arrêt, ainsi que pour la gestion des déchets nucléaires. Une meilleure connaissance de la forme du spectre bêta est aussi très importante pour les radionucléides émetteurs bêta utilisés en médecine nucléaire car l'estimation de la dose administrée et les effets physiologiques en dépendent fortement. Cela est particulièrement vrai en dosimétrie interne en raison du transfert d'énergie linéique beaucoup plus élevé aux basses énergies. L’amélioration de la connaissance des spectres bêta permettrait de consolider la recherche sur les effets des rayonnements dans les tissus humains au niveau cellulaire.
  • Les méthodes développées et les résultats obtenus peuvent être utiles à de nombreuses expériences de recherche fondamentale qui nécessitent des données atomiques et nucléaires de grande précision. À titre d'exemple, les conclusions parfois fortes de toutes les expériences de physique des neutrinos mesurant des antineutrinos issus de réacteurs nucléaires sont limitées par la connaissance du spectre en énergie des particules bêta émises par les produits de fission au coeur du réacteur. L'utilité de ces expériences serait grandement renforcée par l'amélioration des données sur les spectres bêta, provenant d'expériences et de calculs de grande précision. On peut également citer certaines expériences essayant de mettre en évidence la matière noire.

Projets connexes

Partenaires/Collaborations

Ces études sur les transitions par interaction faible et la coordination d’un groupe de travail de l’ICRM dédié à la spectrométrie bêta amènent le LNE-LNHB à collaborer avec de nombreuses équipes.

 

International :

  • Agence Internationale de l’Energie Atomique (AIEA), Nuclear Data Section, Autriche. (données nucléaires)
  • Agence de l’Organisation de Coopération et de Développement Economique pour l’Energie Nucléaire (OCDE/AEN), France. (données nucléaires)
  • Collaboration “BeEST” : Colorado School of Mines, Lawrence Livermore National Laboratory, Stanford University, États-Unis ; TRIUMF, Canada. (physique expérimentale, physique théorique)
  • National Nuclear Data Center, Brookhaven National Laboratory, États-Unis. (données nucléaires)
  • Physics Division, Oak Ridge National Laboratory, États-Unis. (physique expérimentale)

Europe :

  • PTB Braunschweig, Division 6 Ionizing Radiation, Allemagne. (métrologie)
  • Czech Metrology Institute, République Tchèque. (métrologie)
  • KU Leuven, Nuclear and Radiation Physics Section, Belgique. (physique théorique)
  • Department of Physics, University of Jyväskylä, Finlande. (physique théorique)
  • Gonitev BV et TU Delft, Department of Radiation, Science and Technology, Pays-Bas. (physique expérimentale)

France :

  • Université de Strasbourg et Institut Pluridisciplinaire Hubert Curien, groupe Théorie et groupe RaMsEs, France. (physique expérimentale, physique théorique)
  • Grand Accélérateur National d’Ions Lourds (GANIL), France. (physique expérimentale)
  • Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Subatech, Groupe Erdre, France. (physique expérimentale, physique théorique)
  • CEA, Institut de Recherche sur les lois Fondamentales de l’Univers (IRFU), Départements de Physique Nucléaire et de Physique des Particules, France. (physique expérimentale, physique théorique)
  • CEA, Direction des Applications Militaires sur le centre de la Direction d'Ile-de-France (DAM-DIF), Service de Physique Nucléaire, France. (physique théorique)