La révision du système international d'unité (SI) a été adoptée en novembre 2018,  par la Conférence générale des poids et mesures, pour mise en application le 20 mai 2019. La nouvelle définition du kelvin repose dorénavant sur la constante de Boltzmann k. Cette définition impacte les laboratoires nationaux de métrologie (LNM) qui pourront assurer la mise en pratique du kelvin (MeP-K) par n'importe quel moyen faisant intervenir k. Les LNM ont à saisir toutes les opportunités offertes pour mettre en œuvre la réalisation du kelvin et sa mise en pratique. La MeP-K se fera donc, non plus seulement à partir de l'Echelle Internationale de Température (EIT-90), basée sur des points fixes de références et des méthodes d'extrapolation, mais en lien direct avec la définition. Par voie de conséquence, les LNM pourront définir avec une meilleure exactitude les écarts entre la température thermodynamique T et la température T90 définie dans l'EIT-90. Ils auront la possibilité de disséminer T à partir d'artefacts (points fixes de référence ou d'instruments) étalonnés directement en température thermodynamique. La pyrométrie optique profitera de cette redéfinition qui donne tout son sens aux méthodes radiométriques faisant intervenir la loi de Planck, donc la constante de Boltzmann.

Ce projet est intimement lié au projet européen Real-K (Realising the redefined kelvin) portant sur la réalisation du kelvin en lien avec la définition. Il comporte des travaux visant à définir de nouvelles références - points fixes et instruments- et a pour objectif la MeP-K entre 800 K et 3000 K, avec une incertitude inférieure à celle de la réalisation de l'EIT-90.

Objectifs

Améliorer la couverture du domaine 1 357 K à 3 000 K par de nouveaux points fixes caractérisés en température thermodynamique avec uTut90

Réaliser et disséminer la température thermodynamique par voie radiométrique vers les moyennes températures jusqu’à 800 K

Concevoir des points fixes robustes raccordés directement aux références nationales (en température thermodynamique) et adaptés à des conditions de mise en œuvre différentes de celles des cellules de référence

Caractériser l’écart constaté d'environ 40 mK entre 𝑡90 (𝐶𝑢)−𝑡90 (𝐴𝑔) (non unicité de l'EIT-90) et maitriser les écarts de réalisation de l’EIT-90 avec la longueur d’onde

Résumé et premiers résultats

La première étape consiste en la fabrication d'un lot de quatre points fixes basés sur des transitions de phase d'alliage métal-carbone, de températures réparties entre 1426 K et 3022 K. Elle est directement liée à la deuxième, consacrée à l'estimation des effets thermiques sur la reproductibilité des transitions de phase des points fixes. L'objectif de ces deux étapes est de concevoir et caractériser des références robustes de température de changement de phase reproductibles. La troisième étape vise à attribuer une température thermodynamique à ces quatre nouveaux point fixes, qui associés à ceux déjà caractérisés dans le cadre du projet européen InK (Implementing the new kelvin), va constituer un lot solide de neuf références en lien direct avec la nouvelle définition : TCu = 1358 K, TCo-C = 1597 K, TFe-C = 1426 K, TCo-C = 1597 K, TPd-C = 1765 K, TPt-C = 2011 K, TRu-C = 2226 K, TRe-C = 2747 K et TWC-C = 3011 K. La quatrième étape est une extension de la troisième vers les "basses températures" (jusqu'à 800 K). Elle vise à étendre les références pyrométriques en recouvrant le domaine où le thermomètre à résistance de platine (instrument de référence jusqu'à 1235 K) atteint ses limites.

Impacts scientifiques et industriels

  • Contribution à l’élaboration de la future mise en pratique de la définition du
  • Dissémination de T par voie radiométrique jusqu’à 800 K
  • Sur le long terme, ce projet profitera directement à l'industrie qui accèdera de manière plus directe, donc plus fiable, aux références de température thermodynamique.

Partenaires

Participants du projet européen Real-K