Abstract

Cone calorimeter is one of the basic test bench for fire behaviour tests on materials. It is used to measure heat release rate of materials under heat flux by thermochemical method. This method is complex and uses a large number of parameters. Test method is nowadays standardized and some of measured parameters are used for material ranking in some regulations. It is therefore essential to determine test bench uncertainty. This paper presents uncertainty calculation applied to the test method and an example of it application to a set of fire behaviour tests on a material.

Key words

calorimetry
thermochemistry
cone calorimeter
uncertainty
material
fire

Abstract

Calibration of the industrial pyrometers in the temperature range between 1 000 °C and 3 000 °C requires a blackbody cavity source which temperature is measured using a reference pyrometer. The use of such blackbody cavity source is imposed by the characteristics of the pyrometers to be calibrated, because of the large field-of-view (usually of the order of 10 mm to 30 mm), which is not compatible with the dimensions of the fixed points used to calibrate reference pyrometers. The reference pyrometer and the pyrometer under the calibration can also have very different spectral characteristics. The filter’s transmission bandwidth of the reference pyrometer filter is generally of the order of 20 nm, but it can reach several hundred nanometers for the pyrometer under calibration. An unbiased comparison of the two instruments can be only obtained with a transfer blackbody cavity with emissivity equal to 1. The different spectral and spatial characteristics of the compared pyrometers require a determination of the effective emissivity of the cavity and a determination of the radial profile of surfaces intercepted by the field-of-view of pyrometers. The high temperature furnace Thermogauge HT-9500 LNE-Cnam has been characterized for use as a transfer cavity. For this, the longitudinal and radial gradients in the cavity have been measured by various methods. The effective emissivity of the cavity was calculated. An estimate of the corrections and uncertainties associated with non-unit emissivity are presented in this article.

Key words

blackbody source
emissivity
high temperature
radiation thermometer calibration technique
thermal gradient

Abstract

Nowadays, there are few high level metrological devices able to measure accurately the regular reflectance in the infrared region. The Laboratoire national de métrologie et d’essais (LNE) has developed an apparatus designed for the absolute measurement of this parameter in the infrared using the goniometer technique. This method is well appropriate for the measurement of spectral regular reflectance of materials with flat, non-scattering and high reflectivity surfaces such as mirrors. The apparatus works in a wide part of the infrared region (from 1 µm to 16 µm) and can operate in the visible and near infrared spectrum too. Mirror alignments, detection system and concentricity of opto-mechanics elements were optimized to reach uncertainties going from 0,001 to 0,015 depending on the wavelengths.

Key words

REGULAR REFLECTANCE
MIRROR CALIBRATION
INFRARED
RADIATIVE PROPERTIES
GONIOMETER

Abstract

The Cr-C eutectic and peritectic phase transitions have been observed at nominal temperatures of respectively 1 742 °C and 1 826 °C. Despite some advantages compared to many other temperature fixed points, as the good reproducibility of the peritectic phase transition, suitability for contact thermometry, or the low price of the material, the Cr-C has not been extensively investigated. Only a few papers have been published mainly focusing on the difficulties encountered during the construction of the cells. In this paper, the characterisation of two Cr-C fixed point cells, from their construction, to the ITS-90 temperature determinations at the eutectic and the peritectic phase transitions is summarised. The reproducibility of the melting plateaus and their sensitivity to the carbon proportion in the mixture are discussed.

Key words

high temperature fixed points
htfp
chromium-carbon
eutectic
peritectic
contact thermometry

Abstract

The LCM (LNE-Cnam joint laboratory) has improved the metrological performance of a standard facility for accurate measurements of the enthalpy of fusion and specific heat in the temperature range [23 °C, 1000 °C]. The metrological approach was to modify a commercial Calvet calorimeter in order to lower the uncertainty of measurement and to insure the metrological traceability of the measurements to the SI units, in particular by designing a new calibration system. This new reference facility and the associated measurement method have been validated by measuring the enthalpies of fusion of pure metals (indium, tin and silver). The results obtained on the three tested pure metallic materials are in very good agreement with data obtained by other National Metrology Institutes.

Key words

metrology
calorimetry
enthalpy of fusion
electrical calibration

Currently temperature measurements are traceable to the 1990 International Temperature Scale (ITS-90) or the 2000 Provisional Low Temperature Scale (PLTS-2000) below 1 K. These scales have an empirical basis and are based on a series of fixed points whose temperatures have been determined a priori by primary methods.

Objectives

Extension of primary thermometry

Summary

Fin here the detailled description of the project:

http://projects.npl.co.uk/ink

Publications and communications

WOOLLIAMS E., ANHALT, K.,  BALLICO, M., BLOEMBERGEN, P., BOURSON, F., BRIAUDEAU, S., CAMPOS, J., COX, M. G., DEL CAMPO, D., DURY, M.R., GAVRILOV, V., GRIGORYEVA, I., HERNANDEZ, M.L., JAHAN, F., KHLEVNOY, B., KHROMCHENKO, V.,  LOWE, D.H., LU, X., MACHIN, G., MANTILLA, J.M., MARTIN, M.J., MCEVOY, H.C., ROUGIÉ, B., SADLI, M., SALIM, S.G.,  SASAJIMA, N., TAUBERT, D.R., TODD, A., VAN DEN BOSSCHE, R., VAN DER HAM, E., WANG, T., WEI, D., WHITTAM, A., WILTHAN, B., WOODS, D.,  WOODWARD, J., YAMADA, Y., YAMAGUCHI, Y., YOON, H. and YUAN, Z.,Thermodynamic temperature assignment to the point of inflection of the melting curve of high temperature fixed points”, Philos Trans A Math Phys Eng Sci., 2016, DOI: 10.1098/rsta.2015.0044.

SADLI M., MACHIN G., ANHALT K., BOURSON F., BRIAUDEAU S., DEL CAMPO D., DIRIL A., KOZLOVA O., LOWE D.H., MANTILLA AMOR J. M., MARTIN M. J., MCEVOY H., OJANEN-SALORANTA M., PEHLIVAN Ö., ROUGIÉ B. and SALIM S. G. R., “Dissemination of thermodynamic temperature above the freezing point of silver”, Philos Trans A Math Phys Eng Sci., 2016, DOI: 10.1098/rsta.2015.0043

YAMADA Y.,  ANHALT K., BATTUELLO M., BLOEMBERGEN P., KHLEVNOY B., MACHIN G., MATVEYEV M., SADLI M., TODD A. and WANG T.,Evaluation and Selection of High-Temperature Fixed-Point Cells for Thermodynamic Temperature Assignment”, Int J Thermophys, 36, 2015, 1834-1847, DOI: 10.1007/s10765-015-1860-0

YANG I., PITRE L., MOLDOVER M.R, ZHANG J., FENG X. and SEOG K. JIN., “Improving acoustic determinations of the Boltzmann constant with mass spectrometer measurements of the molar mass of argon”, Metrologia, 52, 2015, 394–403.

GAVIOSO R. M., MADONNA RIPA D., M. STEUR P. P., GAISER C.  , ZANDT T., FELLMUTH B., DE PODESTA M., UNDERWOOD R., SUTTON G., PITRE L., SPARASCI F., RISEGARI L., GIANFRANI L., CASTRILLO A. and MACHIN G., “Progress towards the determination of the thermodynamic temperature with ultra-low uncertainty”, Phil. Trans. R. Soc. A374, 2016, 20150046 DOI: 10.1098/rsta.2015.0046

MOLDOVER M.R., GAVIOSO R.M., MEHL J.B., PITRE L., DE PODESTA M. and ZHANG J.T., “Acoustic gas thermometry”, Metrologia, 51, 2014, DOI: 10.1088/0026-1394/51/1/R1.

SADLI M., ANHALT K., BOURSON F., BRIAUDEAU S., DEL CAMPO D., DIRIL A., KOZLOVA O., LOWE D., MACHIN G., MANTILLA AMOR J.M., MARTIN M.-J., MC EVOY H., OJANEN M., PEHLIVAN Ö., ROUGIE B. and SALIM S.G.R., “Experimental assessment of thermodynamic temperature dissemination methods at the highest temperatures”, 17e Congrès international de métrologie, Paris, France, September 21st-24th 2015, DOI: 10.1051/metrology/201515017

MACHIN G., ENGERT J.; GAVIOSO R., SADLI M. and WOOLLIAMS E., “The Euramet Metrology Research Programme Project: Implementing the new kelvin (InK)”, 5th All-Russian and COOMET Member Countries Conference “Temperature-2015”, St Petersburg, Russian Federation, April 21st-24th 2015.

SADLI M., MACHIN G., ANHALT K., BOURSON F., BRIAUDEAU S., DEL CAMPO D., DIRIL A., KOZLOVA O., LOWE D., MANTILLA AMOR J. M., MARTIN M., MCEVOY H.C., OJANEN M., PEHLIVAN Ö., ROUGIÉ B. and SALIM S.G.R., “Dissemination of thermodynamic temperature above the silver freezing point temperature”, Towards implementing the new kelvin – The Royal Society, Newport Pagnell, United Kingdom, May 18th-19th 2015.

BOURSON F., BRIAUDEAU S., SALIM S.G.R., ROUGIE B., TRUONG D., KOZLOVA O. and SADLI M., “Radiometric temperature measurements on high-temperature fixed points at LNE-Cnam”, Towards implementing the new kelvin – The Royal Society, Newport Pagnell, United Kingdom, May 18th-19th 2015.

PITRE L., SPARASCI F., RISEGARI L. and TRUONG D., “Acoustic thermometry: new results from 77 K to 303 K at LNE-CNAM”, Tempmeko 2013, Funchal, Madeira, Portugal, October 14th-18th 2013.

RISEGARI L. ET TRUONG D., PITRE L, SPARASCI F, TRUONG D, VERGÉ A. and BUÉE B.,  “ACOUSTIC GAS THERMOMETER BELOW 4K: FIRST TESTS” (379), Tempmeko 2013, Madeira, Portugal, October 14th-18th 2013.

Partners

  • NPL,
  • CEM,
  • CNAM,
  • CSIC,
  • INRIM,
  • LNE,
  • MIKES,
  • PTB,
  • TUBITAK,
  • DIISR, NIM,
  • UVa,
  • VNIIOFI,
  • NRC,
  • NIST,
  • KRISS,
  • UC,
  • IPC

The International Temperature Scale 1990 (ITS-90) is the current internationally recognized temperature scale in use worldwide. After the redefinition of the kelvin via the Boltzmann constant, the ITS-90 will continue to be used as a robust and reliable tool. However, it has some limitations and pending issues that need to be resolved.

Objectives

Development of new advanced techniques to improve the traceability of the current definition of the kelvin, before the redefinition of 2018

Establish traceability to the SI according to the new definition, in order to support the widest and simplest dissemination of the temperature unit to end users

Summary

Find here the detailled description of the project:

http://www.notedproject.com/

Publications and communications

 

CAPPELLA C., SPARASCI F., PITRE L., BUÉE B. et EL MATARAWY A., “Improvements in the realization of the triple point of water in metallic sealed cells at LNE-Cnam”, Int. J. Metrol. Qual. Eng., 6, 4, 2015, DOI: 10.1051/ijmqe/2015026.

BUÉE B., VERGÉ A., VIDAL V., GEORGIN E. et SPARASCI F., “Copper passivation procedure for water-filled copper cells for applications in metrology”, Rapport du projet MeteoMet, http://arxiv.org/abs/1211.7294, novembre 2012.

KOZLOVA O., RONGIONE L. et BRIAUDEAU S., « Estimation des erreurs d’étalonnage de thermomètres infrarouges industriels liés à la méconnaissance de l’émissivité de sources et des bandes spectrales de thermomètres infrarouges », 17e Congrès international de métrologie, Paris, France, 21-24 septembre 2015, DOI: 10.1051/metrology/20150015010.

KOZLOVA O., SADOUNI A., TRUONG D.et BRIAUDEAU S., “A new tuneable IR radiation thermometer”, NOTED final workshop, Bruxelles, Belgique,  5-6 May 2015

CAPPELLA C., “New ITS-90 fixed points designs to study the thermal effects on TPs of O2, Ar, Hg and H2O”, NOTED final workshop, Bruxelles, Belgique,  5-6 May 2015

SPARASCI F., “New fixed points below the TPW”, NOTED final workshop, Bruxelles, Belgique,  5-6 May 2015

SPARASCI F., PITRE L., “Procedures for the calibration of SPRTs with respect to T in the temperature range between 77 K and 300 K NOTED final workshop, Bruxelles, Belgique,  5-6 May 2015

BRIAUDEAU S., SADOUNI A., KOZLOVA O., TRUONG D., BOURSON F., SADLI M., “Performances of the innovative portable spectroradiometer: fast wide-range tunability and high reproducibility”, NEWRAD 2014, Helsinki, Finlande,  24-27 June 2014

DEL CAMPO D. et al. , “A Multi-Institute European Project for Providing Improved and Simpler Traceability to the Kelvin”, International congress of Metrology, 2013, Paris, France,  7th-10th October 2013, DOI: 10.1051/metrology/201315006

VIDAL V., VERGE A., MARTIN C., BUE B., SPARASCI F., “Calorimetric Quasi-Adiabatic Realization of the Triple Point Of Water At LCM LNE/CNAM”, Tempmeko 2013, Funchal, Madère, Portugal, 14-18 Octobre 2013

FIORILLO D., VERGÉ A., MARTIN C., BARBOTIN V., HERMIER Y., SPARASCI F., “New calorimeter for SPRT calibrations at argon and oxygen fixed points: further improvements at LNE-CNAM”, Tempmeko 2013, Funchal, Madère, Portugal, 14-18 Octobre 2013

SADOUNI A., « Réalisation et caractérisation métrologique d’un pyromètre accordable », CNAM, Saint-Denis, France, 11 décembre 2015

Partners

  • CEM (ES),
  • CMI (CZ),
  • INRiM (IT),
  • IPQ (PT),
  • MKEH (HU),
  • NPL (GB),
  • PTB (DE),
  • SMD (BE),
  • TUBITAK (TR),
  • UL (SI),
  • VSL (NL)

This European project aims to improve metrological traceability for the measurement of the main essential climate variables (ECVs) defined by the Global Climate Observing System (GCOS). This will address the need for improved accuracy in environmental parameter measurements and assist climatologists in implementing reliable climate change models.

Objectives

Improve metrological traceability for the measurement of key climate variables defined by the Global Climate Observing System

Summary

Find here the detailled description of the project:

http://www.meteomet.org/

Publications and communications

SPARASCI F., JOUIN D., DEUZÉ T., BORDEREAU J., COEUR-JOLY G., SOURGEN D. and HERTZOG A.,, “Submillimetre thermistors for balloon-borne applications up to lower stratosphere: preliminary characterization with 0.02K uncertainty”, Meteorol. Appl. , 2015, DOI: 10.1002/met.1504

MERLONE A. et al., “The MeteoMet project – metrology for meteorology: challenges and results”, Meteorol. Appl., 22, S1, 2015, 820-829, DOI: 10.1002/met.1528

MERLONE A. et al., “The MeteoMet2 project – Highlights and results”, Meas. Sci. Technol., 2017, DOI: 10.1088/1361-6501/aa99fc

SPARASCI F., “Calorimetric techniques for the calibration of environmental sensors: application to thermistors and salinometers”, Arctic Metrology Workshop, April 23rd 2015, Turin, Italy

CAPELLA A., PITRE L., SPARASCI F. et GEORGIN E., “Differential Microwave Hygrometer with Quasi-Spherical Resonators for Accurate Humidity Measurements on a Wide Range, 9th Symposium on thermophysical properties”, Boulder USA, June 2015

KLEIN A. et al., “Detection techniques for online and on-site monitoring of essential climate variables in the upper atmosphere”, International Workshop on Metrology for Meteorology and Climate MMC 2014, Brdo, Slovenia, September 2014

CAPELLA A. et al., “Differential quasi-spherical resonant cavity hygrometer for atmospheric moisture”, International Workshop on Metrology for Meteorology and Climate MMC 2014, Brdo, Slovenia, September 2014

GARCÍA IZQUIERDO C. et al., “Metrology for terrestrial and surface ECVs involved in METEOMET2”, International Workshop on Metrology for Meteorology and Climate MMC 2014, Brdo, Slovenia,September 2014

SPARASCI F. et al., “Novel methods, instruments and measurements for climate parameters: achievements in JRP METEOMET”, International Workshop on Metrology for Meteorology and Climate MMC 2014, Brdo, Slovenia, September 2014

SPARASCI F., “Novel environmental sensors: improving measurements in the arctic”, Arctic Circle Assembly, October 15th-18th, Reykjavik, Island

NICOLA CHIODO, ANDREA CAPPELLA, LAURENT PITRE, FERNANDO SPARASCI, LARA RISEGARI, MARK D.  PLIMMER et ERIC GEORGIN, “Differential microwaves hygrometer for moisture measurements on a wide water vapor concentration range” Tempmeko2016,  Zakopane, Poland, June 26th - July 1st 2016

GARCÍA IZQUIERDO C. et al., “Metrology for terrestrial and surface ECVs”, Tempmeko 2016, Zakopane, Poland, June 26th - July 1st 2016

CHIODO N. et al., "Differential microwaves hygrometer for moisture measurements on a wide water vapor concentration range”, MMC-2016, Madrid, Spain, September 26th-29th 2016

GEORGIN E., « Projet : JRP ENV 58 METEOMET, Métrologie & Météorologie : la mesure au service de la prévision », Paris, France, December 6th 2016

SPARASCI F., “MeteoMet: Metrology for Essential Climate Variables”, 1st EU Environmental Research Infrastructures – Industry Joint Innovation Partnering Forum, 18-19 May 2017, Grenoble

SPARASCI F., P. Alberto Giuliano Albo, Marc Le Menn, Damien Malardé, “Development of calibration facilities for oceanographic temperature and salinity sensors”, Meteomet week, Turin, Italy, September 11th-15th 2017.

CHIODO N. et al., “Differential microwave hygrometer for high precision measurements over a wide humidity range: recent progress”, Meteomet week, Turin, Italy, September 11th-15th 2017.

SPARASCI F., co-hosting of the round table “Métrologie”, Atelier Expérimentation et Instrumentation AEI 2017, Brest, France, October 17th-19th 2017

Partners

  • INRiM (IT),
  • BEV/PTP (AT),
  • CEM (SP), CETIAT (FR),
  • CMI (CZ), CNAM (FR),
  • CSIC (SP), DTI (DK),
  • IMBiH (BA),
  • MIKES (FI),
  • NPL (UK),
  • PTB (DE),
  • SMD (BE),
  • TUBITAK (TK),
  • UL (SI),
  • VSL (NL),
  • SHOM (FR)