Dans le domaine des mesures électriques, les mesures d'impédance jouent un rôle très important puisqu'elles sont largement utilisées dans différents domaines de la science et de l’ingénierie. Le rôle principal de la métrologie des impédances est la réalisation des unités d'impédance : l'ohm (Ω), le farad (F), le henry (H) et leurs échelles associées. Ces trois unités sont reliées les unes aux autres par l’intermédiaire de la seconde (s) : 1 Ω = 1 H/s = 1 s/F. Par conséquent, une unité peut être utilisée pour réaliser les deux autres en utilisant différents ponts de comparaison fonctionnant en courant alternatif. Les chaînes de traçabilité des mesures d’impédance, reliant l’étalon calculable de capacité ou l’étalon quantique de résistance, mettent en jeu une succession de comparaisons d’impédance réalisées actuellement au LNE à l’aide de ponts analogiques. Ce projet vise à simplifier ces longues chaînes de comparaison, à améliorer les incertitudes de mesure et à élargir les possibilités de mesure d’impédance en mettant en œuvre des ponts numériques de comparaison.

Objectifs

Développer des ponts d'impédance numériques pour réaliser et automatiser les mesures d'impédance sur l'ensemble du plan complexe, dans la gamme de fréquences comprise entre 60 Hz et 20 kHz et avec des incertitudes jamais atteintes pour ces mesures.

Dresser un état de l’art des ponts Josephson et tester la faisabilité d’un type d’architecture de pont numérique intégrant des dispositifs Josephson pour générer des rapports de tension.

Développer des étalons de capacité ultra stables à diélectrique en silice fondue de 1 pF à 1 000 pF.

Résumé et résultats

Les méthodes employées aujourd’hui au LNE pour assurer la traçabilité des mesures d’impédance au SI mettent en œuvre des ponts de comparaison à transformateurs. Ces systèmes sont complexes et ne permettent d’obtenir les meilleures incertitudes que pour un nombre restreint de valeurs et de natures d’impédance. Le développement de ponts numériques pour réaliser des échelles d'impédance utilisant comme point de départ l’impédance d’une résistance déterminée à partir d’une résistance étalonnée à partir de l’effet Hall quantique ou d’un condensateur dont la capacité aura été déterminée au moyen d’un condensateur calculable améliorera la chaîne de traçabilité, en termes d’accessibilité, de ressources et permettra d’élargir la gamme des impédances mesurées.

Ce projet vise à développer des ponts de comparaison en deux et quatre paires de bornes en collaboration avec le CMI (laboratoire national de métrologie de la République Tchèque), permettant de réaliser une chaine de traçabilité au SI des mesures d’impédance sur une bande de fréquence allant de quelques dizaines de Hz à quelques dizaines de kHz, pour tout type d’impédance. Ces nouveaux systèmes permettraient d’assurer la traçabilité des impédances au SI avec des incertitudes comparables voire meilleures dans certaines conditions que celles atteignables aujourd’hui avec les ponts à transformateur. Ces ponts numériques contenant la plupart des briques élémentaires d'un pont d'impédance quantique conçu sur la base de l’étalon de tension de Josephson, le projet permettra aussi de concevoir une architecture de pont quantique.

Par ailleurs, fort de l’expérience acquise dans la fabrication de condensateurs de très faibles valeurs de capacité, développés dans le cadre du projet européen Euramet/EMRP AimQuTE, de nouveaux étalons ultra stables à diélectrique en silice fondue de capacité de 10 pF à 1 nF vont être développés au cours de ce projet RNMF, en collaboration avec le BIPM, pour améliorer la chaîne de mesure permettant de relier le farad à l’ohm.

Impacts scientifiques et industriels

  • Existence d’une chaîne de traçabilité au SI de la mesure d’impédance à partir de l’effet Hall quantique sur une bande de fréquence allant de quelques dizaines de hertz à quelques dizaines de kilohertz ;
  • Réponse aux attentes des utilisateurs en matière de traçabilité des inductances, pour des valeurs de 1 µH à 1 mH de 40 Hz à 20 kHz (mesures limitées à 1 kHz actuellement) et ceci au meilleur niveau métrologique ;
  • Possibilité d’effectuer des étalonnages au LNE d’impédances électriques sur tout le plan complexe ;
  • Mise à disposition de condensateurs étalons ultra stables pour répondre aux besoins exprimés par de nombreux laboratoires nationaux de métrologie ;
  • Participation à plus long terme à la réalisation du multimètre quantique en disposant d’un pont quantique d’impédance conduisant au développement d’un étalon quantique d’impédance en synergie avec d’autres projets menés en métrologique électrique quantique comme le projet visant à exploiter les propriétés du graphène pour réaliser des étalons quantiques (cf projet du RNMF « Effet Hall quantique dans le graphène pour la métrologie »).

Publications et communications

Ralph SINDJUI, « Réalisation et caractérisation de dispositifs de mesure associés à la détermination de la constante de von Klitzing à partir d’un condensateur calculable étalon dit de Thompson-Lampard », Thèse de doctorat de sciences de l’Université Paris-Saclay, Versailles, Génie électrique et métrologie, soutenue le 1er juillet 2016, TEL-01480637v1.

G. Trapon, O. Thévenot, J.-C. Lacueille et W. Poirier, “Determination of the von Klitzing constant RK in terms of the BNM calculable capacitor - Fifteen years of investigations”, Metrologia, 2003, 40, 4, 159–171, DOI: 10.1088/0026-1394/40/4/304.

F. Delahaye, A. Fau, D. Dominguez et M. Bellon, “Absolute determination of the Farad and the Ohm, and measurement of the quantized Hall resistance RH(2) at LCIE”, IEEE Trans. Instrum. Meas., 1987, vol. IM–36, 2, 205–207.

Partenaires

  • CMI, Institut national de métrologie de la République Tchèque)
  • Partenaires du projet européen JRP GIQS (Graphene Impedance Quantum Standard, 2019-2022).
  • BIPM

Projets connexes

  • EURAMET/EMPIR GIQS, Graphene Impedance Quantum Standards (JRP GIQS)
  • Projet RNMF « Étalon calculable de Thompson-Lampard »

Ce projet fait suite à la révision de 2018 du Système international d’unités (SI) qui favorise l’exploitation d’étalons quantiques pour la mise en pratique des unités et la dissémination des références de métrologie. Il s’inscrit dans le cadre des recherches menées au LNE sur le développement de l’étalon quantique de résistance électrique sur la base de l’effet Hall quantique (EHQ). Précisément il vise à fiabiliser les dispositifs en graphène pour la réalisation de cet étalon, après que la faisabilité a été démontrée au LNE en 2015. Les conditions expérimentales de mise en œuvre des dispositifs sont particulièrement étudiées, ainsi que leur stabilité et le contrôle de leurs propriétés en vue de faciliter leur utilisation en dehors des laboratoires de métrologie, d’étendre leur application à d’autres étalons électriques, notamment en courant alternatif, ou encore de les intégrer dans de nouveaux systèmes de mesure.

Ce projet concoure également aux recherches de nouvelles applications du graphène promises à d’importants développements industriels et à l’essor des technologies quantiques par le développement d’outils, fondés sur la mise en œuvre de l’effet Hall quantique dans des nanodispositifs, pour les mesures électriques ultimes (mesures de haute exactitude ou mesures d’électrons uniques, par exemple).

Objectifs

Poursuivre les études de l’effet Hall quantique dans le graphène pour fiabiliser les étalons quantiques de résistance électrique ;

Augmenter les connaissances fondamentales pour l’obtention de l’EHQ dans le graphène afin de faciliter encore davantage les conditions de mise en œuvre des étalons quantiques de résistance ;

Mettre en œuvre l’effet Hall quantique dans le graphène en régime de courant alternatif (AC) pour réaliser un étalon quantique d’impédance

Explorer la faisabilité de détecteurs d’électrons uniques sur la base de l’EHQ dans le graphène.

Résumé et résultats

La CGPM (Conférence générale des poids et mesures) a adopté, lors de sa 26e réunion, en novembre 2018, une révision majeure du Système international d’unités (SI), entrée en vigueur le 20 mai 2019. Cette révision renforce la position de la mécanique quantique parmi les fondements du système avec, notamment, la redéfinition du kilogramme à partir d’une valeur fixée de la constante de Planck et la redéfinition de l’ampère à partir d’une valeur fixée de la charge élémentaire. L’effet Hall quantique se trouve dès lors recommandé pour contribuer à la réalisation d’un certain nombre d’unités du SI (A, Ω, F, H, kg, par exemple). Par ailleurs, cette révision du SI intervient alors que les technologies quantiques, au sens large, connaissent un essor important. De nouvelles perspectives s’ouvrent donc et la métrologie, jusqu’à présent utilisatrice de technologies quantiques, pourrait apporter un soutien plus spécifique au développement de nouvelles technologies quantiques.

C’est dans ce contexte que ce projet a été élaboré avec l’objectif général de poursuivre l’exploitation de l’effet Hall quantique dans le graphène pour développer des outils de mesure : étalon quantique « pratique » pour la dissémination des unités du SI au meilleur niveau d’exactitude et détecteur d’électrons uniques pour les technologies quantiques.

Image
Structure couche de graphène
Fig.1 - Représentation de la structure moléculaire d’une couche de graphène.

Le graphène 2D est une monocouche d’atomes de carbone structurés en réseau cristallin hexagonal (en forme de nid d’abeille) qui présente en effet des propriétés physiques très avantageuses pour la simplification de la mise en œuvre de l’effet Hall quantique et pour la réalisation de circuits électroniques quantiques.

Ainsi, le LNE a pu démontrer en 2015, en étudiant des dispositifs en graphène de haute qualité, qu’il était possible de mettre en œuvre l’étalon de résistance à effet Hall quantique dans des conditions expérimentales significativement simplifiées (champ magnétique aussi faible que 3,5 T, température de 10 K ou encore courant de mesure de 0,5 mA) par rapport à celles requises par GaAs/AlGaAs (10 T, 1,5 K, 50 µA), tout en conservant une exactitude à 1×10-9 près (Nature Nanotechnology, 10, 965, 2015, 10.1038/nnano.2015.192).

Image
Barre de Hall lithographiée dans graphène sur SiC
Fig.2 - Image, obtenue par microscopie optique, d’une barre de Hall (de largeur 100 micromètres) lithographiée dans une couche de graphène sur SiC et munie de contacts métalliques à base d’or.

Sur la base de cet état de l’art, le projet a plusieurs objectifs spécifiques autour de l’étalon à effet Hall quantique. Il s’agit d’abord d’évaluer la possibilité de fiabiliser la technologie qui a permis d’atteindre les performances démontrées en 2015, en collaboration étroite avec les partenaires qui en sont à l’origine : le CRHEA pour la croissance de graphène par dépôt chimique en phase vapeur (CVD) de propane/hydrogène sur SiC et le C2N pour la nanofabrication des dispositifs. Le premier objectif est donc de permettre la production d’un nombre suffisant de dispositifs avec des performances répétables (quantification de la résistance de Hall à 1×10-9 près, à 5 T, 4 K, 50 µA), propres à une large dissémination de l’unité de résistance, l’ohm (Ω). Les principaux défis technologiques déjà identifiés sont le contrôle de la densité de porteurs, l’homogénéité de celle-ci et la mobilité des porteurs. Un second objectif concerne l’exploration de l’effet Hall quantique dans le graphène, au-delà de l’état de l’art, et notamment à très bas champ magnétique (1 T), pour une simplification encore plus grande de la mise en œuvre de l’étalon à effet Hall quantique. Des dispositifs en graphène encapsulé dans h-BN seront aussi étudiés à cette occasion. Un troisième objectif porte sur l’étude de l’effet Hall quantique dans le graphène en régime de courant alternatif AC, jusqu’à des fréquences de l’ordre du kHz, en vue d’améliorer la dissémination des unités d’impédance, à commencer par le farad (F).

Ces objectifs concourent à étendre l’utilisation de l’étalon à effet Hall quantique en facilitant sa mise en œuvre afin de le rendre accessible à un plus grand nombre d’utilisateurs et en l’intégrant dans des systèmes de mesure compacts afin d’élargir ses d’applications.

Partant de son expérience sur l’effet Hall quantique dans le graphène, le LNE étudiera aussi, dans le cadre de ce projet, le développement d’un détecteur d’électrons uniques fondé sur la rupture de l’effet Hall quantique. Ce détecteur est destiné à être intégré dans des circuits quantiques en graphène, développés par ailleurs, dans le cadre d’un projet européen. Ces circuits sont conçus pour la manipulation d’électrons uniques avec des techniques d’optique quantique électronique, dans la perspective du développement de différentes applications dans le domaine des technologies quantiques.

L’ensemble des développements technologiques prévus dans ce projet participeront aussi à l’effort global de recherche et d’innovation sur le matériau graphène.

Impacts scientifiques et industriels

  • Amélioration des performances de l’étalon quantique de résistance électrique et généralisation des étalons quantiques en métrologie électrique pour la mise en pratique du SI-2018, par une exploitation large de l’effet Hall quantique, notamment dans le graphène ;
  • Contribution au développement de techniques quantiques pour la métrologie et les capteurs de mesure ;
  • Soutien au développement de technologies émergentes exploitant les propriétés exceptionnelles du matériau graphène.

Publications et communications

POIRIER W., DJORDJEVIC S., SCHOPFER F. and THÉVENOT O., “The ampere and the electrical units in the quantum era”, Comptes Rendus de l’Académie des sciences - Physique, 2019, 20, 1-2, 92-128, DOI: 10.1016/j.crhy.2019.02.003.

JOUAULT B., SCHOPFER F. and POIRIER W., “Beauty of quantum transport in Graphene”, in Epitaxial Graphene on Silicon Carbide - Modeling, Characterization And Applications (Chapitre 7), Gemma Rius et Philippe Godignon, Jenny Stanford Publishing, 2018, ISBN 9789814774208.

SCHOPFER F., “Graphene for quantum electrical metrology and the revised International System of units SI”, ImagineNano/GraphIn 2018, Bilbao, Spain, 13-15 March 2018.

BRUN-PICARD J., DAGHER R., MAILLY D., NACHAWATY A., JOUAULT B., MICHON A., POIRIER W. and SCHOPFER F., “Quantum Hall resistance standard in Graphene grown by CVD on SiC: State-of-the-Art of the Experimental Mastery”, Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris, France, 8-13 juillet 2018, DOI: 10.1109/CPEM.2018.8501087.

LAFONT F., RIBEIRO-PALAU R., KAZAZIS D., MICHON A., COUTURAUD O., CONSEJO C., CHASSAGNE T., ZIELINSKI M., PORTAIL M., JOUAULT B., SCHOPFER F. et POIRIER W., Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide, Nature Communications, 6, 6806, 20 avril 2015, DOI: 10.1038/ncomms7806.

Ribeiro-Palau R., Lafont F., Brun-Picard J., Kazazis D., Michon A., Cheynis F., Couturaud O., Consejo C., Jouault B., Poirier W. et Schopfer F., Quantum Hall resistance standard in graphene devices under relaxed experimental conditions, Nature Nanotechnology, 10, 965-974, 7 sept. 2015, DOI: 10.1038/nnano.2015.192.

Partenaires/Collaborations

  • CNRS/C2N, CRHEA, L2C, Institut Néel, LPENS
  • CEA/SPEC, IRIG
  • Partenaires du projet français ANR GraphMet
  • Partenaires des projets européens EURAMET/EMPIR SEQUOIA et GIQS

Projets connexes

  • JRP EURAMET/EMRP-2012 GraphOhm, Quantum resistance metrology based on graphene
  • EURAMET/EMPIR-2017 SEQUOIA, Single electron quantum optics for for quantum-enhanced measurements
  • EURAMET/EMPIR-2018 GIQS, Graphene Impedance Quantum Standards
  • ANR 16-CE09-0016 GraphMet, Étalons quantiques en graphène pour les unités électriques du SI
  • European FET Flagships/ Graphene Flagship (2013-2023)

Ce projet porte sur les mesures de puissance moyenne de signaux électriques de haute fréquence (RF et micro-onde). Il vise à consolider et étendre la traçabilité des mesures de puissance jusqu’à la bande de fréquences terahertz (170 GHz dans ce projet). Compte tenu de la raréfaction des sondes de puissance bolométriques et de la difficulté d’approvisionner des sondes thermoélectriques compatibles avec la référence primaire française (microcalorimètre), le LNE souhaite développer des sondes de puissance HF, de technologie thermoélectrique, pour les intégrer dans de nouveaux bancs de référence primaire (microcalorimètre) et secondaire (bancs d’étalonnage en puissance HF) qui sont développés également dans le cadre de ce projet.

Objectifs

Concevoir et mettre en œuvre de nouvelles sondes thermoélectriques de puissance adaptées aux connecteurs 1,85 mm [DC – 67 GHz] et aux guides d’onde rectangulaires [50 GHz – 170 GHz] ;

Concevoir et mettre en œuvre de nouveaux étalons primaires (microcalorimètres) ;

Concevoir et mettre en œuvre de nouveaux bancs de transfert de puissance HF (coaxial et guide d’onde rectangulaire) pour l’étalonnage sur la bande de fréquences du DC à 170 GHz ;

Améliorer les incertitudes de mesure de puissance HF et étendre les capacités de mesure sur un très large domaine de fréquence allant jusqu’à la bande térahertz.

Résumé et résultats

De nombreuses applications utilisent aujourd’hui des ondes électromagnétiques dans le domaine millimétrique du spectre (typiquement jusqu’à 100 GHz) et, de plus en plus, dans la bande térahertz des fréquences (typiquement de 100 GHz à 30 THz), par exemple le nouveau format de communication 5G en cours de déploiement, les portiques de sécurité mis en œuvre dans les gares ou les aéroports, les véhicules autonomes en phase de test ou les mesures de radiométrie spatiale.

Le niveau de puissance du signal de sortie d’un système ou d’un composant radiofréquence (RF) est un paramètre critique pour la phase de conception des équipements de communication et constitue un critère important pour la performance de ces équipements RF.

Pour mesurer cette puissance RF ou microonde, différents instruments sont employés : un analyseur vectoriel ou un wattmètre et sa sonde. Le wattmètre associé à sa sonde de puissance est l’instrument le plus exact utilisé dans l’industrie. Les sondes de puissance utilisées jusqu’à présent par les industriels ou organismes de recherche sont des sondes à diode, à thermocouple ou à thermistance qui transforment l’énergie RF en une tension DC mesurable avec les meilleures incertitudes.

Les laboratoires nationaux de métrologie étalonnent ces wattmètres et ces sondes qui permettent de mesurer la puissance moyenne du signal RF ; cette puissance mesurée inclut la puissance de la porteuse et des harmoniques. Actuellement les aptitudes de mesure et d’étalonnage ne s’étendent pas au-delà de 110 GHz en Europe, c’est-à-dire au tout début de la bande térahertz des fréquences. Cela est devenu insuffisant pour répondre aux besoins correspondant aux nouveaux usages des signaux HF en pleine expansion.

Image
Microcalorimètre, étalon de puissance HF
Fig.1 - Schéma d’un microcalorimètre, étalon primaire pour la mesure de puissance HF (la cuve d’eau n’est pas représentée).

Pour la mesure primaire de la puissance, le LNE a développé un microcalorimètre. C’est une enceinte thermique, isolée de l’extérieur, qui permet de mesurer des variations de température de l’ordre du millième de kelvin. Il est constitué, d’une cuve d’eau (tampon thermique, température stable et homogène), d’une ogive (protection des sondes de l’eau), thermocouples ou thermopile (pour mesurer l’échauffement entre la monture à étalonner et la tare), guide à parois minces (isolation thermique entre la sonde et les guides de liaison), guides de liaison (pour l’injection du signal HF).

Ce projet de recherche en métrologie vise donc à consolider et étendre la traçabilité des mesures de puissance moyenne jusqu’à des fréquences térahertz (170 GHz). Et, compte tenu de la raréfaction des sondes de puissance bolométriques et de la difficulté d’approvisionner des sondes de puissance thermoélectriques compatibles avec la référence primaire française (microcalorimètre), ce projet implique la réalisation de nouvelles sondes de puissance HF fondée sur la technologie thermoélectrique pour les intégrer dans de nouveaux bancs de référence primaire (microcalorimètre) et secondaire (bancs de transfert de puissance HF).

Impacts scientifiques et industriels

  • Réponses aux demandes croissantes d’étalonnage en puissance HF large bande en connecteur coaxial et globalement d’étalonnages dans la bande térahertz des fréquences ;
  • Réduction de la durée d’étalonnage des montures coaxiales large bande [DC - 67 GHz] ;
  • Extension des possibilités d’étalonnage en puissance HF en connectique coaxiale à 67 GHz (actuellement limitées à 50 GHz), en France et en Europe ;

  • Existence de nouveaux étalons primaires de puissances HF (microcalorimètres) et extension des possibilités d’étalonnage en guide d’onde à 170 GHz (actuellement 110 GHz), en France et en Europe ;

  • Amélioration des incertitudes d’étalonnage au plus haut niveau métrologique des montures en guide d’onde au-delà de 75 GHz ;

  • Simplification de la chaîne d’étalonnages avec une réduction du nombre annuel d’étalonnages nécessaires pour les montures coaxiales et du temps de mesure par fréquence avec le microcalorimètre, conduisant à une forte réduction du temps global d’étalonnage au plus haut niveau métrologique ;

  • De répondre à des demandes clients d’étalonnage en puissance dans le domaine térahertz.

Publications et communications

AHMAD S., CHARLES M., ALLAL D., NEGI P.S. and OJHA V.N., “Realization of 2.4mm coaxial microcalorimeter system as national standard of microwave power from 1 MHz to 50 GHz”, Measurement, 2018, 116, 106-113, DOI: 10.1016/j.measurement.2017.10.063.

ALLAL D., BELIÈRES D., LITWIN A. et CHARLES M., « Développement d’un microcalorimètre sur ligne coaxiale de 2,4 mm et des sondes de puissance associées », Revue française de métrologie, 2014, 33, 3-8, DOI: 10.1051/rfm/2014001.

CHARLES M., LITWIN L., POLETAEFF A. et ALLAL D., « Étalon de puissance radiofréquence pour les basses fréquences de 100 kHz à 1 GHz », Revue française de métrologie, 2012, 29, 25–30, DOI: 10.1051/rfm/2012001.

KAZEMIPOUR A. ZIADÉ F., ALLAL D., JENU M.Z.M. et BERGEAULT E., “Non-linear modeling of RF thermistor: application to bolometer mount calibration”, IEEE Trans. on Instrumentation and measurement, 2011, 60, 7, 2445-2448, DOI:10.1016/j.measurement.2017.10.063.

ZIADE F., BERGEAULT E., HUYART B. et KAZEMIPOUR A., “Realization of a calculable RF power standard in coplanar technology on Alumina substrate”, IEEE Trans. On Microwave Theory and Techniques, 2010, 58, 6, 1592-1598, DOI: 10.1109/TMTT.2010.2048256.

ZIADÉ F., BOURGHES M., KAZEMIPOUR A., BERGEAULT E. et ALLAL D., « Étalon calculable de puissance radiofréquence », Revue française de métrologie, 2009, 20, 3-8, RFM-20-Ziade.

Partenaires/Collaborations

  • PTB, Institut national de métrologie d’Allemagne
  • METAS, Institut national de métrologie de Suisse
  • Laboratoire GeePs de l’Ecole CentraleSupélec, Gif-sur-Yvette, France
  • Institut d'Électronique de Microélectronique et de Nanotechnologie (IEMN) de Lille

Les liens optiques cohérents par fibre optique permettent de transférer sur des distances continentales une référence de fréquence optique avec une stabilité et une exactitude surpassant de plusieurs ordres de grandeurs les méthodes satellitaires. Ce sont les seuls outils capables de comparer sans dégradation les étalons de fréquence optique de dernière génération.

Objectifs

Poursuivre l'implantation géographique de liens optiques métrologiques pour la comparaison des références de fréquences, en Europe

 

Comparaisons d’étalons de fréquence à ultra haute résolution sur des réseaux fibrés de télécommunication nationaux et européen

Permettre un raccordement direct par cette implantation aux étalons nationaux de temps et fréquence

Interconnecter les réseaux nationaux allemand, italien et anglais et ainsi faciliter la dissémination et la comparaison des références de fréquence

Résumé et premiers résultats

Image
SIB-TF-13_Fig1
Carte des liaisons métrologique par fibre optique envisagées pour l'Europe ; en vert : liaisons existantes, en jaune : liaisons en cours de réalisation, en violet : liaisons envisagées à moyen terme.

Le niveau de performance des liaisons optiques permettraient de vérifier le bilan d’incertitude des étalons de fréquence les plus exacts, de mettre à jour des effets de relativité générale, et de tester les variations des constantes fondamentales. Les performances du système, déjà impressionnantes, peuvent encore être améliorées pour rendre encore plus sensibles ces tests de physique et de métrologie fondamentales. Les limites de performances des liens cohérents sont liées au temps de propagation de la lumière dans la fibre et aux bruits intrinsèques de l’instrumentation. Le projet LICORNE vise à améliorer la qualité de l’instrumentation des liens optiques cohérents, à mieux comprendre les limites fondamentales et techniques des liens, et à développer de nouvelles liaisons optiques cohérentes à l’échelle nationale et européenne. Ce projet intervient alors que le laboratoire, avec le soutien de RENATER, a mis au point et validé la technique des liens cascadés, qui nous permettent d’atteindre pratiquement le même niveau de performance mais sur un lien de 1100 km, et bientôt de 1500 km.

Ainsi, les principaux travaux du projet LICORNE porteront sur l’amélioration des techniques, en travaillant sur la sensibilité des interféromètres et à leur isolation thermique, et en travaillant vers des électroniques plus puissantes, plus agiles, et mieux intégrées. Il faudra également développer des méthodes de comparaisons de fréquence de type 2-voies (two-way), techniques alternatives à celle de la compensation active, en configuration uni-directionnelles et bi-directionnelles. De plus, l’équipe s’intéressera également au développement de méthodes de transfert double permettant l’envoi simultané de fréquence RF et optique. Enfin, pour valider les travaux sur les nouvelles techniques et méthode, l’équipe mènera une  campagne de comparaison entre les différents moyens de comparaison existant actuellement : liens satellitaires (TWSTFT, GNSS) et les liens cohérents fibrés.

Impacts scientifiques et industriels

  • Comparaisons par fibres optiques des étalons nationaux de fréquence à ultra haute résolution sur les réseaux de télécommunications européens.
  • Liaisons opérationnelles pour la dissémination des références de fréquences optiques et micro-ondes, en France et en Europe.

Partenaires

  • Laboratoire de Physique des Lasers (LPL)
  • REFIMEVE+
  • Labex First-TF
  • Observatoire de Nançay
  • PTB
  • INRIM
  • NPL
  • KRISS

Les étalons atomiques de fréquences de haute performance (fontaines atomiques et horloges optiques) atteignent aujourd’hui des stabilités relatives de fréquence de l’ordre de 10-14 à une seconde (quelques 10-16 sur une journée) pour les fontaines et un ordre de grandeur de mieux pour les étalons optiques. L’exactitude pour les fontaines est de quelques 10-16 et les horloges optiques ont une exactitude de 10-17 (avec une stabilité à une seconde de l’ordre de 10-15 avec en perspective quelques 10-16). Ces performances impressionnantes vont bien au-delà des capacités de stabilité des systèmes de comparaison d’horloges à distance existants, limités aujourd’hui à 10-15 à un jour.

Objectifs

Réalisation de liens optiques fibrés pour la comparaison de fréquences ultrastables

Résumé et premiers résultats

Image
SIB-TF-10_Fig1
Représentation des liens optiques pour la comparaison et la dissémination du temps entre horloges réparties sur le territoire national et européen.

Ce projet fait suite au travail pionnier du projet LO2 (Lien optique longue distance) consacré au développement d’un lien optique ultra-stable dédié au transfert d'une fréquence ultra-stable entre laboratoires distants sans aucune dégradation de ses performances de stabilité. Un lien optique utilise la propagation d'un laser stabilisé émettant autour de 1,55 μm dans des fibres optiques avec une correction active du bruit de phase induit par la propagation dans la fibre. Le résultat principal de LO2 a été la démonstration d'un lien optique multiplexé sur un réseau fibré de télécommunications dans lequel se propageaient simultanément les données Internet. Pour cela, le LNE-SYRTE a  étroitement collaboré avec le Réseau National pour la Technologie, l’Enseignement et la Recherche, RENATER. Ce nouveau type de lien optique est une avancée majeure car il permet d’utiliser le réseau de fibres optiques déjà existant entre chaque laboratoire pour les applications Internet.

Le projet ROME a les objectifs suivant  :

  • Etudier et réaliser des amplificateurs optiques fibrés dopées Erbium optimisés et pilotables à distance (permettant d’amplifier le signal).
  • Démontrer la faisabilité d’un lien optique fibré de 1 100 km Paris-Nancy-Paris ;
  • Réaliser une version améliorée de station de régénération optique ;
  • Réaliser et tester un lien Paris-Strasbourg-Paris de 1400 km environ avec 3 à 5 stations régénératrices ;
  • Démontrer le transfert simultané temps-fréquence sur porteuse optique ;
  • Etudier des méthodes de type 2-voies pour les comparaisons de fréquences optiques.

Un travail important a été réalisé afin de valider les amplificateurs fibrés permettant d’amplifier les signaux métrologiques, ainsi que les stations régénératrices où les signaux voient leurs dérives corrigées afin qu’ils conservent leurs caractéristiques de stabilité et d’exactitude.

Image
SIB-TF-10_Fig2

Un premier lien cascadé de 1 100 km (ayant 4 stations régénératrices) à été réalisé du Laboratoire de Physique des Laser (LPL), situé à Villetaneuse, à Nancy puis un retour au LPL par un autre canal. Fort de cette démonstration, la station de Nancy a été déplacé à Strasbourg permettant au lien d’atteindre presque 1 500 km. Les résultats en termes de stabilité de fréquence montrent que pour les 3 liens (LPL-Nancy-LPL, LPL-Strasbourg-LPL et SYRTE-Strasbourg-SYRTE) le plancher des 10-18 est atteint après une centaine de secondes d’intégration et que celui des 10-19 est atteint au bout de 4 000 secondes (soit un petit peu plus d’une heure d’intégration).

Ainsi, ce projet a permis jusqu’à maintenant de démontrer des stabilités de liens de presque 1 500 km bien supérieures à celles des meilleures horloges optiques du monde et ouvre donc la voie à des comparaisons par liens fibrés des différentes horloges (fontaines atomiques et horloges optiques) des laboratoires de métrologie européen. Des comparaisons entre les horloges optiques du NPL (GB), du SYRTE (F) et de la PTB (DE) sont en cours de réalisation et font l’objet du projet LICORNE

Impacts scientifiques et industriels

  • Réaliser des liens fibrés permettant des comparaisons intercontinentales d’horloges,
  • Maitrise des stabilités pour disséminer le SI jusqu’aux utilisateurs.

Publications et communications

LOPEZ O., HABOUCHA A., CHANTEAU B., CHARDONNET C., AMY-KLEIN A.., et SANTARELLI G. , "Ultra-stable long distance optical frequency distribution using the Internet fiber network.",  Opt. Expr. 20, 2012, 23518-23526.

LOPEZ O., KANJ A., POTTIE P.E., ROVERA D., ACHKAR J., CHARDONNET CH., AMY-KLEIN A. et SANTARELLI G., "Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network", Applied Physics B: Lasers and Optics, 2012, DOI: 10.1007/s00340-012-5241-0.

BERCY A., STEFANI F., LOPEZ O., CHARDONNET CH., POTTIE P.-E. et AMY-KLEIN A., “Two-way optical frequency comparisons at 5×10-21 relative stability over 100-km telecommunication network fibers”, Phys. Rev. A, 90, 2014, 061802(R), DOI: 10.1103/PhysRevA.90.061802.

STEFANI F., LOPEZ O., BERCY A., LEE W.-K., CHARDONNET CH., SANTARELLI G., POTTIE P.-E. et AMY-KLEIN A., “Tackling the Limits of Optical Fiber Links”, JOSA B, 32, 2015, 787, DOI: 10.1364/JOSAB.32.000787.

BERCY A., STEFANI F., LOPEZ O., POTTIE P.-E., CHARDONNET CH. AMY-KLEIN A. et SANTARELLI G, "Towards large scale metrological fibre network", EFTF-IFCS 2013, Prague, République Tchèque, 21–25 juillet 2013.

LOPEZ O., CHARDONNET CH., AMY-KLEIN A., KANJ A., POTTIE P.-E., ROVERA D., ACHKAR J. et SANTARELLI G., “Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network”, Joint Meeting of the 26th European Frequency and Time Forum (EFTF) and the 2013 IEEE Frequency Control Symposium (FCS), Prague, République Tchèque, 21–25 juillet 2013.

RAUPACH S., KOCZWARA A., GROSCHE G., STEFANI F, LOPEZ O , AMY-KLEIN A., CHARDONNET CH., POTTIE P.-E, et SANTARELLI G., "Bi-directional optical amplifiers for long-distance fibre links", EFTF-IFCS 2013, Prague, République Tchèque, 21–25 juillet 2013.

LOPEZ O., POTTIE P.-E., CHANTEAU B, STEFANI F., BERCY A., CHARDONNET CH., SANTARELLI G. et AMY-KLEIN A., "Long distance ultra-stable frequency dissemination on a dedicated wavelength channel of a telecommunication network.",  CLEO 2013

POTTIE P.-E, LOPEZ O., KANJ A., ROVERA D., ACHKAR J., CHARDONNET CH., AMY-KLEIN A. et SANTARELLI G, "Time and Frequency comparisons with Optical Fiber Links", Journées des Systèmes de Référence Temps-Espace, 2013.

STEFANI F., BERCY A., LOPEZ O., AMY-KLEIN A. et POTTIE P.-E.,  "Theoretical and Experimental Investigation of Phase Noise Processes on Optical Fiber Links for Frequency Comparison and Dissemination", European Time and Frequency Forum, Neuchâtel, Suisse, 23-26 juin 2014.

KRONJÄGER J., MARRA G., LEE W.-K., POTTIE P.-E., AMY-KLEIN A., LOPEZ O., SPAHIC F., CALONICO D., ROBERTS G. et SCHNATZ H., Towards an international optical clock comparison between NPL and SYRTE using an optical fibre network”, 8th Symposium on Frequency Standards and Metrology, Potsdam, Allemagne, 12-16 octobre 2015.

LOPEZ O et al., "Progress on a Cascaded Optical Link Between Paris and Strasbourg", European Time and Frequency Forum, Neuchâtel, Suisse, 23-26 juin 2014.

LOPEZ O et al., "Progress towards a metrological fiber wide-area network", 3rd VLBI workshop 2014

POTTIE P.-E. et al., « Vers la comparaison d’horloges optiques par liens optiques fibrés », Journée GRAM, Bordeaux, France, 3-4 avril 2014.

SCHNATZ H. et al., “NEAT-FT: the European Fiber Link Collaboration", https://www.ptb.de/emrp/neatft_home.html

Partenaires

  • Laboratoire de Physique des Lasers (LPL),
  • INRIM,
  • PTB
  • IDIL Fibres Optiques

Le projet de LAser Stabilisé sur Iode en Cavité (LASIC) porte sur la stabilisation en fréquence d’un laser Nd:YAG doublé en fréquence, sur une transition de l’iode moléculaire au voisinage de 532 nm. La vapeur d’iode est contenue dans une courte cellule en quartz scellée, refroidie et placée dans une cavité optique de faible finesse, fonctionnant sous ultravide.

Objectifs

Développement d’un étalon de fréquence, compact et robuste et très stable au voisinage de 532 nm

Résumé et résultats

Image
IND-TF-02-Fig1

Le but de ce projet est la mise en place d’un dispositif instrumental compact, ultra stable en fréquence et susceptible de répondre à des besoins pour des applications spatiales. Le projet a été initié et principalement financé par le CNES, qui souhaitait répondre aux besoins de la mission spatiale LISA (Laser Interferometer Space Antenna) dédiée à la détection d’ondes gravitationnelles dans l’espace. Ce projet spatial implique un lien interférométrique longue distance utilisant la radiation infrarouge, alors que l’harmonique deux de cette radiation est utilisée pour sonder la vapeur d’iode pour les besoins de la stabilisation en fréquence.

Image
IND-TF-02_Fig2
Stabilité de fréquence du laser asservi LASIC.

Habituellement, la stabilisation en fréquence de lasers Nd:YAG sur l’iode moléculaire est opérée en utilisant la technique d’absorption saturée basée sur deux faisceaux lasers contra-propageant dans une cellule d’iode. Cette approche a été développée dans de nombreux laboratoires de métrologie pour la mise en place d’étalons secondaires de fréquence transportables, notamment dans le cadre de la mise en pratique de la définition du mètre. Le recouvrement des faisceaux laser contra-propageant dans la vapeur d’iode a été clairement identifié comme un des paramètres importants limitant la stabilité de fréquence à long terme du laser asservi. L’utilisation d’une cavité en anneau, permet théoriquement d’améliorer cette stabilité de fréquence, le contraste des raies d’absorption étant proportionnel à la finesse de la cavité.

Les premières mesures, réalisées sur la cavité à l’air libre, ont montré des performances de stabilités relatives de fréquence à court terme de l’ordre de 8×10-14t-1/2, la dérive de fréquence observée après quelques dizaines de ms étant attribuée au dispositif laser asservi sur une fibre optique (qui permet d’effectuer le battement et la comparaison de stabilité de fréquence)

Après avoir réalisés ces expériences à l’air libre, une seconde cavité a été développée, prenant mieux en compte les aspects vibrationnels des supports miroirs, afin d’obtenir de nouvelles mesures sous vide poussé (~ 4×10-5 Pa). En comparant la fréquence asservie sur iode à celle d’un laser femtoseconde,  la stabilité de fréquence obtenue à 1 s est de 4×10-13. La différence de résultat entre les deux mesures (à l’air libre et sous vide poussé) est sans doute due à des spécifications non conformes d’un point de vue de la stabilité mécanique mais également du dispositif en anneau qui est susceptible d’introduire des fluctuations de recouvrement des faisceaux optiques.

Impacts scientifiques et industriels

  • Réalisation d’un étalon de fréquence au voisinage de 532 nm ;
  • Dispositif compact, adapté aux missions spatiales.

Publications et communications

TURAZZA O., ACEF O., AUGER G., HALLOIN H., DUBURCK F., PLAGNOL E., HOLLEVILLE D., DIMARCQ N., BINETRUY P., BRILLET A., LEMONDE P., DEVISMES E., PRAT P., LOURS M., TUCKEY P. et ARGENCE B., Lasic-Cavity-enhanced molecular iodine laser frequency stabilization for space projects”, 38th COSPAR Scientific Assembly, Bremen, Allemagne, 15-18 juillet 2010.

Partenaires

  • Laboratoire AstroParticule et Cosmologie (APC) 
  • Observatoire de la Côte d’Azur (OCA-ARTEMIS)

Le laboratoire LNE-SYRTE travaille depuis de nombreuses années sur le programme spatial PHARAO/ACES. ACES (Atomic Clock Ensemble in Space) est une mission spatiale de l'ESA (Agence Spatiale Européenne), dédiée à la physique fondamentale au travers de mesures fines de l’espace-temps. PHARAO (Projet d’Horloge A Refroidissement d’Atomes en Orbite) est une horloge primaire spatiale à atomes froids de césium, réalisée sous la maîtrise d’œuvre du CNES (Centre national d’études spatiales).

Objectifs

Réalisation d’une horloge atomique en microgravité dans l’Espace,

Tests de physique fondamentale (relativité générale, définition de la seconde…).

Résumé et premiers résultats

Image
SIB-TF-08_Fig1

La mission spatiale ACES repose sur deux premières étapes : l’étude d’un ensemble de nouvelles horloges spatiales en microgravité pour fournir une référence de temps/fréquence avec des performances inégalées et le transfert de ces performances sans altération entre les horloges situées dans l’Espace et celles des stations métrologiques sur Terre.

Les travaux de recherche portent sur la physique fondamentale (tests sur les invariances), la physique associée à la réalisation d'une horloge à atomes froids en microgravité et le transfert de temps/fréquence. Le principal domaine d'application est la métrologie espace-temps et aura des applications en géodésie et sur les systèmes de positionnement/navigation. Le laboratoire Kastler Brossel (LKB) et le LNE-SYRTE ont été les initiateurs de cette mission. En outre ils sont fortement impliqués dans le développement industriel de PHARAO ainsi que dans toutes les phases d'évaluation des instruments et de la préparation de la mission.

La charge utile ACES sera installée sur l’ISS (Station Spatiale Internationale). Elle est composée de deux horloges atomiques, d'un moyen de comparaison local, d'une station de transfert de temps deux voies et d'un récepteur GPS/GALILEO. La première horloge est un nouvel étalon primaire avec des atomes de césium refroidis comme source atomique. Elle fournira un signal métrologique avec une exactitude relative de fréquence de 10–16 et une stabilité de 10–13×τ–1/2. Son développement est assuré par le CNES à Toulouse. La seconde horloge est un maser à hydrogène développé par la société Spectra Time en Suisse. Ce maser devrait avoir la meilleure stabilité de phase/fréquence sur des durées de 5 s à 10 000 s. Le dispositif de transfert de temps, bord et sol, est développé en Allemagne par Timetech. C'est un système « deux voies » avec des niveaux de bruit de 0,3 ps à 300 s, 7 ps à 1 jour et 23 ps à 10 jours. Le récepteur double GPS/GALILEO aura deux rôles : fournir des informations pour affiner l'orbitographie de la charge utile et assurer un lien avec l'ensemble des satellites de positionnement à des fins de caractérisation (effets atmosphériques par exemple).

Au sol, le système d’étude est complété d’un réseau de laboratoires qui possèdent des horloges de hautes performances. Environ 35 laboratoires répartis sur la Terre devraient participer à des comparaisons avec leurs propres moyens au sol. À ces laboratoires, il faut ajouter les équipes intéressées par l'analyse des données pour explorer les domaines de la relativité, de la géodésie, de l'atmosphère ou du positionnement.

Dans ce cadre, le LNE-SYRTE intervient sur les quatre phases suivantes du programme :

–   la participation au développement instrumental de PHARAO et à la validation de ses performances au sol puis en vol ;

–   la mise en œuvre d’une station métrologique au sol avec l’antenne pointée vers la station spatiale internationale (ISS), où sera implantée la charge utile ACES, le module d’émission et de réception des signaux métrologiques (MWL, MicroWave Link). Ce module est référencé sur le signal physique UTC(OP), échelle de temps reposant sur le fonctionnement continu des fontaines atomiques ;

–   le développement d’un centre d’analyse scientifique des données fournies par le moyen de comparaison à distance MWL ;

–   la participation au suivi du programme ACES puis à son exploitation.

Le LNE-SYRTE est partenaire de la mission spatiale internationale ACES de l’Agence Spatiale Européenne (ESA). Son rôle est majeur puisqu’il a la responsabilité scientifique de l’étalon primaire de fréquence, PHARAO, instrument clé du segment spatial développé par le CNES, et des moyens métrologiques au sol pour effectuer des comparaisons de temps avec le segment spatial. Il accueillera une antenne d’émission/réception pour effectuer ces comparaisons et sera une station maîtresse de la mission ACES. En outre, le LNE-SYRTE est aussi responsable du traitement des données de comparaison entre l’échelle de temps spatial et les échelles de temps des stations au sol pour en extraire les résultats scientifiques.

Actuellement, les performances du prototype de l’horloge ont été testées et montrent une exactitude de fréquence de 2×10–15, limitée par le fonctionnement au sol. Au total l’exactitude de l’horloge devrait s’établir au niveau de 1,3×10–16 en vol. Le montage du modèle de vol a été réalisé et des comparaisons avec la fontaine mobile du LNE-SYRTE ont également eu lieu. Ces comparaisons ont démontré l’accord de la stabilité et de l’exactitude avec les objectifs du projet. Le déploiement des stations micro-ondes ACES au sol a commencé en France, ainsi que dans les laboratoires européens partenaires du projet. Ces stations permettront de comparer l’horloge PHARAO avec les horloges de ces laboratoires.

Le modèle de vol de l’horloge PHARAO, après sa qualification technique et scientifique, a été livré à l’ESA en juillet 2014. La mission ACES a pris beaucoup de retard suite à des problèmes de développement sur le maser à hydrogène (compagnon de PHARAO) et sur les modules de comparaison MWL bord et sol, instruments sous la responsabilité de l’ESA. Les difficultés sont maintenant surmontées et le lancement de la charge utile, prévu initialement en 2016, a été programmé en 2020.

Aujourd’hui le maser à hydrogène est terminé ; il a passé les tests en vibration avec succès (fin 2017) et il est en cours de qualification sur les aspects thermiques. Concernant les modules MWL, des tests de performances sont en cours.

L’activité en cours au LNE-SYRTE sur le projet PHARAO consiste en l’approfondissement de scenarios d’opération en cours de mission pour l’évaluation des effets systématiques et établir le meilleur compromis entre la stabilité et l’exactitude de fréquence (collab. avec K. Gibble). Ces études sont basées sur des simulations Monte Carlo et des retours d’expériences effectuées lors des tests au sol. Le choix du meilleur scenario sera effectué lors des premières mesures de stabilité de fréquence de PHARAO en vol, car la géométrie de PHARAO est, bien sûr, optimisée pour fonctionner en microgravité.

Les travaux pour l’installation de la station MWL à l’Observatoire de Paris sont terminés. Le signal physique UTC(OP) est disponible. Les logiciels permettant de simuler et d’analyser des données de comparaison des horloges via la mission ACES incluant la totalité des effets physiques connus sont opérationnels.

Impacts scientifiques et industriels

  • Comparaison des échelles de temps,
  • Relativité générale,
  • Mesure pour la géodésie et systèmes embarqués.

Publications / Communications

DELVA P., HEES A. et WOLF P., “Clocks in Space for Tests of Fundamental Physics”, Space Science Reviews, 2017, 1-37.

LAURENT P. et al., “The ACES/PHARAO space mission”, Comptes Rendus de Physique, 16, 2015, 540.

DELVA P., LE PONCIN-LAFITTE C., LAURENT PH., MEYNADIER F. et WOLF P., “Time and frequency transfer with the ESA/CNES ACES-PHARAO mission”, Highlights of Astronomy, 16, 2015, 211-212.

MEYNADIER F., DELVA P., LE PONCIN-LAFFITE C., GUERLIN C., LAURENT P. et WOLF P., “Preparing ACES-PHARAO data analysis”, Proceedings ICFS-EFTF, 2015.

PETERMAN P., GIBBLE K., LAURENT P. et SALOMON CH., “Microwave lensing frequency shift of the PHARAO laser-cooled microgravity atomic clock”, Metrologia, 53(2), 2016, 899.

MEYNADIER FR., DELVA P., LE PONCIN-LAFFITE CH., GUERLIN C., LAURENT PH. et WOLF P., “ACES MWL data Analysis center at SYRTE”, Rencontres de Moriond – Gravitation, La Thuile, Italy, 25 mars – 01 avril, 2017.

DELVA P., “Atomic Clocks on the Ground and in Space: Towards Chronometric Geodesy and New Tests of the Gravitational Redshift”, Rencontres de Moriond, Gravitation: 100 years after GR, La Thuile, Italy, 21-28 mars 2015.

GUÉNA J. et al., “Clock tests of space-time variation of fundamental constants”, Rencontres de Moriond on Gravitation: 100 years after GR, La Thuile, Italy, 21-28 mars 2015.

SCHMEISSNER R., FAVARD PH., DOUAHI A., PEREZ P., MESTRE N., BALDY M., ROMER A., CHASTELLAIN FR., COPPOOLSE W.W., VON BANDEL N., GARCIA M., KRAKOWSKI M., GUÉRANDEL S., FOLCO Y. et KONRAD W., “Optically pumped Cs space clock development”, 2017 Joint Conference of the IEEE International Frequency Control Symposium the European Frequency and Time Forum, 2017,136.

 

Partenaires

  • Laboratoire Kastler Brossel,
  • Institut de recherche XLIM.
  • Thales,
  • CNES,
  • SODERN,
  • CS SI,
  • EREMS.

Les horloges atomiques de nouvelle génération (horloges optiques) montrent déjà des performances meilleures (de plus d’un ordre de grandeur) que les horloges micro-ondes « classiques », atteignant même des incertitudes inférieures à 1×10-17. Cela les rend particulièrement prometteuses pour des applications spatiales, de physique fondamentale, ou de science de la Terre, telles la navigation géolocalisée, l'observation de la Terre, etc.

Cependant, le problème de la comparaison de ces horloges, à hauteur de leurs performances, en sol-espace ou sur des distances intercontinentales, n'a pas encore été résolu actuellement. Des solutions existent, sur des distances continentales, en utilisant des liens optiques fibrés. Et des essais pour reproduire ce type de lien en espace libre ont vu le jour, dont le projet Mini-DOLL.

Objectifs

Démontrer la faisabilité d’un lien optique cohérent à travers l’atmosphère turbulente en quantifiant le bruit de la transmission dans l'atmosphère et la limite basse de la puissance du signal reçu et les variations/ perturbations possibles du signal transmis à long terme.

Evaluer ce nouveau système en comparaison aux systèmes de liaison satellitaire déjà existants.

Résumé et premiers résultats

Image
SIB-TF-06 Fig1

Dans la première phase, en 2009, une expérience relativement simple a démontré la faisabilité du lien sol-sol sur une distance de 2,5 km, expérience encourageantes pour les futures comparaisons d’horloges à distance en utilisant la phase optique en espace libre. Le laboratoire a ainsi démontré que le principal effet perturbateur était dû aux turbulences atmosphériques qui pouvaient être compensé suffisamment pour que la technique soit intéressante pour les horloges actuelles et futures, et comparable aux liens fibrés, potentiellement sur des distances bien plus importantes. Ces résultats ont été publiés et confirmés récemment par une équipe américaine.

La suite du projet a consisté à étendre l’expérience à un lien sol-satellite en utilisant des coins de cubes embarqués sur des satellites existants. Ce projet a été l’occasion de relever de nombreux défis, essentiellement à cause du bilan de puissance de la liaison qui est très défavorable (< 1 pW de la puissance émise par le laser attendu au retour). Ce bilan est bien plus défavorable, d’au moins 6 ordres de grandeurs, que dans un lien avec émission de chaque côté (un laser dans le satellites). L’expérience Mini-DOLL vise donc à démontrer la faisabilité et à mesurer le bruit d’un tel lien dans des conditions particulièrement défavorables.

Pour cela, un nouveau montage a été nécessaire et développé au LNE-SYRTE entre 2010 et 2012. Ce montage inclut deux lasers stabilisés sur des fibres à délai avec une stabilité relativement bonne (< 10-13en fréquence relative) et la possibilité de balayer l’un des lasers de plusieurs dizaines de GHz d’une manière bien contrôlée afin de compenser l’effet Doppler dû au mouvement du satellite dans le ciel. Ce système de lasers et ses performances ont donné de très bons résultats et ont également été publiés.

Finalement, ce montage a été transporté à l’Observatoire de la Côte d’Azur (OCA) et installé sur le télescope MéO du site de Calern. Trois campagnes expérimentales ont eu lieu entre novembre 2012 et mars 2013. Initialement il a été prévu d’utiliser un système d’optique adaptative (OA) déjà sur place et fourni par l’ONERA afin d’améliorer le bilan de liaison et le pointage du satellite pour capter le signal retour. Malheureusement il s’est avéré que le système OA sur place n’était pas assez performant en termes de luminosité pour les satellites d’intérêt pour Mini-DOLL. Ainsi, le montage a dû être modifié pour essayer de capter un signal retour en l’absence d’OA, mais sans succès.

Malheureusement, l’expérience n’a pas été positive, et il va être nécessaire d’utiliser une optique adaptative opérationnelle, ou au minimum un suivi actif du satellite. Actuellement un nouveau banc d’optique adaptative est en cours de test sur MéO, et en fonction de ses performances, il est envisagé d’effectuer des nouvelles expériences avec Mini-DOLL.

Malgré tout, le projet Mini-DOLL a permis d’avancer significativement vers la réalisation de liens sol-satellite pour la comparaison d’horloges de nouvelle génération, mais aussi pour des applications dans d’autres domaines comme l’observation de la Terre et les télécommunications.

Impacts scientifiques et industriels

  • Démonstration de la faisabilité d'un lien sol-sol en utilisant la phase optique en espace libre ;
  • Comparaisons de fréquence intercontinentales.

Publications et communications

DJERROUD K. et al., “Coherent optical link through the turbulent atmosphere”, Opt. Lett., 35, 2010, 1479 – 1481, DOI: 10.1364/OL.35.001479.

CHIODO N. et al., “Lasers for coherent optical satellite links with large dynamics”, Applied Optics, 52, 2013, 7342-7351, DOI: 10.1364/AO.52.007342.

La seconde est l’unité de temps du SI définie à partir de la fréquence de la radiation de transition entre deux niveaux hyperfins de l’état fondamental de l’atome de césium 133. La fréquence de cette radiation se situe dans le domaine des micro-ondes (autour de 9 GHz). Or depuis quelques années, plusieurs références de fréquence développées dans les laboratoires nationaux de métrologie du temps, fournissent des radiations dont la fréquence se situe dans le domaine du rayonnement optique.

Objectifs

Mise en oeuvre de comparaisons d'horloges optiques

 

Démonter les performances des horloges optiques afin de les intégrer dans le calcul des échelles de temps internationales

Résumé et résultats

Image
SIB-TF-04_Fig1
Schématisation des liens 2-voies pour la comparaison d’horloges par satellites.

Les références de fréquence qui émettent un rayonnement dans la bande optique atteignent désormais, et surpassent même, les performances en termes de stabilité et d’exactitude, des meilleurs étalons primaires actuels que sont les fontaines à atomes de césium ; elles ont des incertitudes relatives très inférieures à 10–16 et atteignent même moins que 10–17 pour les meilleures au monde. Ces évolutions technologiques sont telles qu’il est désormais envisagé de réviser la définition de la seconde afin de disposer d’étalons primaires de fréquence et donc de réaliser la seconde avec ces ultimes performances.

Ce projet collaboratif européen, ITOC, s’inscrit dans ce contexte, pour effectuer les travaux préalables nécessaires à la proposition d'une nouvelle définition de la seconde en apportant des données de mesure pour argumenter les choix possibles. Ces données sont obtenues en effectuant des comparaisons de fréquence des horloges fournissant un signal dans le domaine optique et ayant des incertitudes référencées à la définition actuelle de la seconde. Avant ce projet, peu de données de comparaison existaient. C’est pourquoi ce projet a pour but de mettre en oeuvre des comparaisons d'horloges optiques développées dans 5 laboratoires nationaux de métrologie européens dont le LNE-SYRTE. Le projet européen est coordonné par le NPL (UK) et a débuté en mai 2013.

L’objectif était donc de comparer ces références de fréquences potentielles de telle sorte que seule la limite de comparaison soit l’exactitude des horloges elles-mêmes, en utilisant diverses techniques de comparaison : il y a des comparaisons locales dans un laboratoire (directes entre horloges de même nature ou à l'aide de peignes de fréquence) et des comparaisons distantes entre laboratoires (horloge transportable, liens optiques fibrés ou liens satellitaires à bande passante large – Two Way Satellite Time and Frequency Transfer, TWSTFT).

Dans le cadre de ce projet, les participants ont effectué des mesures de fréquence absolue de leurs horloges optiques à l'aide de peignes de fréquence et de fontaines atomiques. Ils ont évalués complètement tous les effets relativistes influençant les comparaisons de temps et de fréquence entre les horloges optiques avec une exactitude de l'ordre de 10-18, en établissant une connexion avec les techniques géodésiques classiques (nivellement géométrique, modèle de champ gravitationnel à haute résolution, mesures GNSS…). La possibilité d'utiliser des horloges optiques transportables fonctionnant en continu a été étudiée pour la comparaison des horloges à distance. Une expérience a été effectuée pour mesurer une grande différence de potentiel de gravité en utilisant des horloges optiques. Le consortium de laboratoires a effectué une analyse du programme de comparaison afin de vérifier la cohérence des mesures et obtenir des valeurs optimisées pour la fréquence de chaque transition d'horloge par rapport à la définition courante de la seconde SI. Il a également envisagé les facteurs importants influençant l'utilisation des horloges optiques en tant que représentations secondaires de la seconde pour le pilotage du temps atomique international (TAI) et du temps universel coordonné (UTC).

Image
SIB-TF-04_Fig2
Fig. 1 : Types d’horloges opérationnelles dans différents laboratoires nationaux européens : MIKES (Finlande), INRIM (Italie), NPL (Royaume-Unis), LNE-SYRTE (France).

En tant que participant au projet ITOC, le LNE-SYRTE a été fortement impliqué dans :

  • La comparaison des horloges optiques au sein du laboratoire, avec en particulier la mesure directe du rapport de fréquence optique 199Hg/87Sr avec une inexactitude de 1,8×10–16 ;
  • La mise en œuvre d'un moyen de transfert de fréquence à deux voies satellitaire (TWSTFT) large bande. Une unique campagne a été organisée en juin 2015 pour effectuer la plus grande et première comparaison d'horloges optiques à distance, avec des incertitudes de quelques 10-16. Il a été montré que la technique GPS-IPPP, introduite récemment, présente une performance similaire, en stabilité de fréquence, à celle du TWSTFT large bande mais avec un coût opérationnel considérablement réduit ;
  • Des mesures absolues de fréquences optiques au laboratoire : strontium/césium et mercure/césium à la limite d’exactitude des fontaines (2,8×10-16 pour Sr/Cs), et également stromtium/rubidium et mercure/rubidium, à un niveau similaire ;
  • Pilotage du lot de travail du projet « Échelles de temps relativistes et géodésie » ;
  • Campagne de nivellement et GNSS au sein de l'Observatoire de Paris, afin de déterminer, avec la plus grande exactitude possible, les corrections de décalage gravitationnel à appliquer aux horloges atomiques lors de leurs comparaisons locales et distantes, ainsi que pour leur contribution aux échelles de temps internationales ;
  • Modélisation relativiste du transfert de temps-fréquence par fibre optique, avec une exactitude relative inférieure à 10–18 ;
  • Évaluation de la correction relativiste à appliquer aux comparaisons par TWSTFT, en prenant en compte le mouvement résiduel du satellite dans le repère terrestre ;
  • Collaboration étroite avec l’Université de Hanovre (LUH) pour l'élaboration de méthodes et de conventions pour la mesure et la définition des corrections relativistes à appliquer aux horloges atomiques dans le cadre des syntonisations d'horloges et pour la fabrication d'échelles de temps internationales.

La réunion finale du projet européen ITOC a permis de partager les résultats remarquables obtenus dans le cadre de cette collaboration. Elle a eu lieu le 8 avril 2016 à l’University of York (UK) en association avec la conférence EFTF de 2016.

 

Site internet du projet :

http://projects.npl.co.uk/itoc/

Impacts scientifiques et industriels

  • Résultats de comparaisons d’horloges optiques
  • Intégration des horloges optiques dans le calcul des échelles de temps internationales (TAI)
  • Redéfinition de la seconde
  • Contribution à la mission ACES de l’ESA

Publications et communications

MARGOLIS H.S., GODUN R.M., GILL P., JOHNSON L.A.M., SHEMAR S.L., WHIBBERLEY P.B., CALONICO D., LEVI F., LORINI L., PIZZOCARO M., DELVA P., BIZE S., ACHKAR J., DENKER H., TIMMEN L., VOIGT C., FALKE S., PIESTER D., LISDAT C., STERR U., VOGT S., WEYERS S., GERSL J., LINDVALL T. et MERIMAA M., International timescales with optical clocks (ITOC)”, Proceedings of the 2013 Joint European Frequency and Time Forum and International Frequency Control Symposium, 2013, 908–911.

GERŠL J., DELVA P. et WOLF P., Relativistic corrections for time and frequency transfer in optical fibres”, Metrologia, 52, 2015, 552–564.

ABGRALL M., CHUPIN B., DE SARLO L., GUÉNA J., LAURENT P., LE COQ Y., LE TARGAT R., LODEWYCK J., LOURS M., ROSENBUSCH P., ROVERA G. D. ET BIZE S., Atomic fountains and optical clocks at SYRTE: Status and perspectives”, Comptes Rendus de Physique, 16, 461–470, 2015.

DE SARLO L., FAVIER M., TYUMENEV R. AND BIZE S., A mercury optical lattice clock at LNE-SYRTE", Journal of Physics: Conference Series, 723, 2016, 012017.

LISDAT C., GROSCHE G., QUINTIN N., SHI C., RAUPACH S.M.F., GREBING C., NICOLODI D., STEFANI F., AL-MASOUDI A., DÔRSCHER S., HÄFNER S., ROBYR J.-L., CHIODO N., BILICKI S., BOOKJANS E., KOCZWARA A., KOKE S., KUHL A., WIOTTA F., MEYNADIER F., CAMISARD E., ABGRALL M., LOURS M., LEGERO T., SCHNATZ H., STERR U., DENKER H., CHARDONNET C., LE COQ Y., SANTARELLI G., AMY-KLEIN A., LE TARGAT R., LODEWYCK J., LOPEZ O. et POTTIE P.-E., A clock network for geodesy and fundamental science, 2015, arXiv :1511.07735.

TYUMENEV R., FAVIER M., BILICKI S., BOOKJANS E., LE TARGAT R., LODEWYCK J., NICOLODI D., LE COQ Y., ABGRALL M., GUÉNA J., DE SARLO L. et BIZE S., “Comparing a mercury optical lattice clock with microwave and optical frequency standards”, 2016, arXiv : 1603.02026.

LODEWYCK J., BILICKI S., BOOKJANS E., ROBYR J.-L., SHI C., VALLET G., LE TARGAT R., NICOLODI D., LE COQ Y., GUÉNA J., ABGRALL M., ROSENBUSCH P. et BIZE S., “Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock”, 2016, arXiv : 1605.03878.

Partenaires

  • NPL (UK),
  • CMI (CZ),
  • INRIM (IT), 
  • VTT (FI),
  • PTB (DE),
  • LUH (DE).

La métrologie du temps et des fréquences est en pleine révolution du fait du développement de la métrologie des fréquences optiques permettant des améliorations de plusieurs ordres de grandeurs, tant pour les références que pour les méthodes de comparaisons. Cette révolution conduira à une redéfinition de la seconde du Système international d'unités (SI) et au développement de nouvelles méthodes de dissémination associées. Elle impactera des infrastructures et services cruciaux pour la science et la société, notamment les systèmes de navigation par satellites (GPS, GALILEO, etc.), les réseaux de télécommunications, la dissémination de références de temps certifiées et sécurisées.

Objectifs

Développement et étude d'une horloge optique ultra précise à atomes neutres de mercure refroidis par laser répondant aux évolutions actuelles du domaine de la métrologie du temps et des fréquences. L'objectif visé est d'obtenir des exactitudes proches de 10-17 et même 10-18 qui semble être un objectif crédible compte-tenu des nombreux travaux déjà réalisés sur les horloges à réseau optique,

Contribution à une nouvelle définition de la seconde du SI.

Résumé et résultats

Image
SIB-TF-02_Fig1

Ce projet de développement d’une horloge optique ultra précise de nouvelle génération a été entrepris en 2005 au LNE-SYRTE. Si le choix d'utiliser des atomes de mercure pour construire un étalon de fréquence optique de très grande exactitude présente plusieurs avantages, un certain nombre de défis techniques sont à vaincre. Ils sont essentiellement liés à la conception et à la mise en œuvre de sources laser dans le domaine UV du spectre électromagnétique. Parmi les avantages, la possibilité de mettre en œuvre la méthode du réseau optique permettant l’interrogation simultanée de plusieurs milliers d’atomes tout en s’affranchissant des effets de mouvement et d’interaction entre eux, est un gage pour l'obtention d'une très grande exactitude.

Image
SIB-TF-02_Fig2

Au commencement du projet, le refroidissement par laser n'avait jamais été mis en oeuvre pour des atomes de mercure neutres. C'est pourquoi l'équipe a du lever plusieurs verrous technologiques et a démontré, pour la première fois, la faisabilité du refroidissement par laser et du piégeage optique de plusieurs isotopes du mercure. Finalement l’isotope 199 du mercure a été retenu pour construire une horloge optique. Le LNE-SYRTE a démontré qu'une telle horloge atomique optique était capable d’atteindre une exactitude de 1,7×10-16, résultat confirmé par la comparaison avec d’autres horloges atomiques.

En 2017, le laboratoire a mesuré le déplacement de fréquence induit par le réseau optique lui permettant de mettre à jour le bilan d'incertitude de son horloge à atomes de mercure et d'annoncer l'approche de 10-17.

De plus, le LNE-SYRTE a participé à une comparaison internationale par lien optique fibré, lui permettant d'évaluer, à cette occasion, le rapport de fréquence entre ses deux horloges optiques, à atomes de mercure et de strontium, et de comparer la fréquence de l'horloge mercure à celle du PTB (Allemagne).

C’est grâce à ces comparaisons que l’horloge mercure contribue activement à la « révolution optique » de la métrologie du temps et des fréquences en établissant, conformément aux recommandations du CIPM, une liste de valeurs de référence de rapports de fréquences qui préparent la redéfinition de la seconde du SI.

A travers ce projet, l’horloge mercure du LNE-SYRTE a atteint le niveau de fiabilité et de performance qui lui permettra, par son positionnement unique en Europe, de donner une contribution hautement significative aux campagnes de comparaisons internationales par lien optique fibré.

 

Impacts scientifiques et industriels

  • Ouverture vers une nouvelle voie très prometteuse pour la réalisation d'horloges ultra précises ouvrant la perspective des exactitudes de l'ordre de quelques 10-18 ;
  • Contribution à la redéfinition des unités SI au sein de la communauté internationale de métrologie ;
  • Contribution au développement de technologies nécessaires à la construction des horloges optiques qui constituent un moteur pour l’innovation dans le domaine des lasers, de l’électronique à bas bruit, des fibres optiques et de l’instrumentation fondée sur les atomes froids. 

Publications et communications

BIZE S., « Lasers ultrastables et horloges optiques », La Lettre de l'Académie des Sciences, 35/36, 2016, 50-53.

BIZE S. et al., « Horloge à réseau optique à atomes de mercure », Revue française de métrologie, 40, 2015, 13-31.

ABGRALL M. et al., « Atomic fountains and optical clocks at SYRTE: Status and perspectives », C. R. Physique 16, 2015, 461.

MCFERRAN J.J. et al., “Statistical uncertainty of 2.5 × 10-16 for the 199Hg 1S0-3P0 clock transition against a primary frequency standard ”, Physical Review A 89, 2014, 043432, DOI: 10.1103/PhysRevA.89.043432

MCFERRAN J.J. et al., “Erratum : Neutral atom frequency reference in the deep ultraviolet with a fractional uncertainty = 5.7 x 10-15 ”, Physical Review Letters 115, 2015, 219901, DOI: 10.1103/PhysRevLett.115.219901

MCFERRAN J.J. et al., "Neutral atom frequency reference in the deep ultraviolet with a fractional uncertainty = 5.7x10-15 ", Physical Review Letters 108, 183004 (2012), DOI: 10.1103/PhysRevLett.108.183004

MCFERRAN J.J. et al., "Laser locking to the 199Hg 1S0-3P0 clock transition with 5.4x10-15 fractional frequency instability", Optics Letters 37, 2012, 3477, DOI: 10.1364/OL.37.003477

MEJRI S. et al., "Ultraviolet laser spectroscopy of neutral mercury in a one-dimensional optical lattice", Physical Review A 84, 2011, 032507, DOI: 10.1103/PhysRevA.84.032507

YI L. et al., "Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0-3P0 clock transition", Physical Review Letters 106, 2011, 073005, DOI: 10.1103/PhysRevLett.106.073005

DAWKINS S.T. et al., "An Ultra-Stable Referenced Interrogation System in the Deep Ultraviolet for a Mercury Optical Lattice Clock", Applied Physics B: Lasers and Optics 99, 2010, 41-46, DOI: http://dx.doi.org/10.1007/s00340-009-3830

MCFERRAN J. J. et al., "Sub-Doppler cooling of fermionic Hg isotopes in a magneto-optical trap", Optics Letters 35, 2010, 3078, DOI: 10.1364/OL.35.003078

MILLO J. et al., "Ultrastable lasers based on vibration insensitive cavities", Phys. Rev. A 79, 2009, 053829, DOI: 10.1103/PhysRevA.79.053829

PETERSEN M. et al., "Doppler-Free Spectroscopy of the 1S0-3P0 Optical Clock Transition in Laser-Cooled Fermionic Isotopes of Neutral Mercury", Physical Review Letters 101, 2008, 183004, DOI: 10.1103/PhysRevLett.101.183004

DE SARLO L. et al., “A mercury optical lattice clock at LNE-SYRTE”, Frequency Standard and Metrology : Symposium, 8. Potsdam, Germany, 2015

MEJRI S. et al., ”Towards an optical lattice clock based on mercury: loading of a dipole trap”, European Frequency and Time Forum : Proceedings ,Noordwijk, The Netherlands, 2010.

PETERSEN M. et al., “Magneto-optical trap of neutral mercury for an optical lattice clock”, IEEE International Frequency Control Symposium and European Frequency and Time Forum:Proceedings of the joint meeting, 451-454, Toulouse, France, 2008, DOI: 10.1109/FREQ.2008.4623038

BIZE S. et al., “Clock tests of space−time variation of fundamental constants”, Rencontres de Moriond on Gravitation: 100 years after GR : Conference , La Thuile, Italie, mars 2015

BIZE S. et al., “Optical lattice clocks and applications”, Quantum Manipulation of Atoms and Photons : Workshop, Orsay, France, 27 septembre 2013.

TYUMENEV R. et al., “Mercury optical lattice clock at LNE-SYRTE”, Modern Problems in Laser Physics : International Symposium, 6. Novosibirsk, Russia, 25 août 2013.

BIZE S., “Optical frequency standards based on trapped neutral atoms”, Optical Frequency Standards: Workshop NICT, Koganei, Tokyo area, 7 février 2013.

BIZE S. et al., “Strontium and Mercury Optical Lattice Clocks at LNE-SYRTE “, Precision Electromagnetic Measurements : Conference, Washington DC, 3 juillet 2012.

BIZE S., “Development of optical lattice clocks at SYRTE”, ESA Optical Atomic Frequency Standards and Clocks : International workshop , 4. Trani, Italie, 25 octobre 2011.

BIZE S. et al., ”Fundamental Physics Tests using the LNE-SYRTE Clock Ensemble », Rencontres de Moriond and GPhyS colloquium, La Thuile, Italie, 25 mars 2011.

MCFERRAN J.J , MEJRI S.,  YI L., LE COQ Y. AND BIZE S., “Optical Lattice Clock with Neutral Mercury”, URSI General Assembly and Scientific Symposium, Istanbul, Turkey, August 19th, 2011 

MCFERRAN J.J. et al., « Optical Lattice Clock with Neutral Mercury“, Quantum Metrology with Photons and Atoms: Workshop , Torun, Poland, 17 septembre 2011.

BIZE S. et al., “Towards a Mercury Optical Lattice Clock”, Atoms Molecules and Photons : European Conference , Salamanca, Spain, 2010.

BIZE S. et al., ”Testing the stability of fundamental constants using LNE-SYRTE clock ensemble”, Precision Physics of Simple Atomic Systems : Conference , Les Houches, France, 2010.

MEJRI S. et al., “Toward a Mercury Optical Lattice Clock”, ESA Optical Atomic Frequency Standards and Clocks : International workshop, 3. Frascati, Italie, 2009.

MEJRI S. et al., “Toward a Mercury Optical Lattice Clock”, Ultracold Group II Atoms : Quantum Metrology and Information : Workshop, University of Maryland, USA, 2009.

TYUMENEV R., “Mercury lattice clock: from the Lamb-Dicke spectroscopy to stable clock operation.”, Thèse de doctorat en physique, Université Paris 6, 2015.

MEJRI S., « Horloge à réseau optique à atomes de mercure neutre : Détermination de la longueur d’onde magique. », Thèse de doctorat en physique, Université Paris 6, 2012

PETERSEN M., “Laser-cooling of Neutral mercury and Laser-spectroscopy of the 1S0-3P0 optical clock transition”, Thèse de doctorat en physique, Université Paris 6 , 2009.