Le LNE-LNHB dispose d’une installation dédiée à l’étalonnage de sources neutrons, basée sur la méthode dite du « bain de manganèse ». Cette méthode est utilisée depuis les années 1960 dans les laboratoires nationaux de métrologie comme méthode de référence pour mesurer le débit d’émission de sources neutrons. La gamme de mesure du débit d’émission neutronique actuellement couverte par la méthode du bain de manganèse au LNE-LNHB est de quelques 105 s-1 à 109 s-1, avec une incertitude-type relative de 0,5 % à 2 %.

Ce projet vise à élargir la gamme de mesure du laboratoire à des sources de plus faible émissivité (jusqu’à quelques 103 s-1) afin de répondre de manière plus large aux besoins d’étalonnage. En effet, les demandes d’étalonnage de telles sources sont amenées à croître en raison des règles de l’autorité de sureté nucléaire (ASN), limitant à 10 ans la durée d’utilisation des sources radioactives, en application de l’article L.1333 du code de la santé publique.  Ces sources sont utilisées dans une grande variété d’applications : la prospection géologique, le contrôle non-destructif par neutronographie, les analyses de traces par activation neutronique, l’irradiation de matériaux, le démarrage et le pilotage des réacteurs nucléaires (en particulier les réacteurs compacts utilisés dans les chaudières de propulsion navale), ou encore l’étalonnage de dosimètres.

Objectifs

Développer un nouveau dispositif de mesure dédié à la caractérisation de sources neutrons de type XBe ou de sources de fission spontanée. Ce dispositif sera complémentaire à la méthode de référence du bain de manganèse et permettra d’étendre la gamme de mesure du laboratoire aux sources de plus faible émissivité, jusqu’à quelques 103 s-1.

Etudier la faisabilité d’une spectrométrie neutron des sources. Un développement spécifique sera réalisé afin de mettre au point un algorithme de reconstruction du spectre.

Résumé et premiers résultats

Dans le cadre de ses missions en tant que laboratoire national de métrologie des rayonnements ionisants, le LNE-LHNB assure la métrologie des neutrons en termes de débit d’émission sous 4π sr, dont l’unité est la s-1. Le laboratoire dispose d’une installation dédiée à l’étalonnage de sources neutrons, basée sur la méthode dite du « bain de manganèse » : la source est immergée dans une solution de sulfate de manganèse, les neutrons créent 56Mn par réaction (n, γ) sur 55Mn et le débit d’émission de la source est déduit de l’activité en 56Mn de la solution, via une modélisation ad-hoc du système. Cette méthode est utilisée depuis les années 1960 dans les laboratoires nationaux de métrologie comme méthode de référence de la mesure de débit d’émission neutronique. Cette grandeur est aujourd’hui inscrite dans la portée d’accréditation COFRAC du laboratoire afin de répondre de manière adéquate aux besoins d’étalonnage en France. La délivrance d’un certificat d’étalonnage COFRAC garantit la traçabilité des résultats au système international d’unités (SI) grâce aux inter-comparaisons organisées par le BIPM. La gamme de mesure avec la technique du bain de manganèse est de quelques 105  s-1 à 109 s-1, avec une incertitude-type relative de 0,5 % à 2 %. Le débit d’émission minimal mesurable est particulièrement limité par l’activité de 56Mn créée dans la solution. En dessous de 105 s-1, cette activité devient relativement faible, inférieure au Bq, et difficile à mesurer avec une précision satisfaisante.

L’étude proposée vise à développer un nouveau dispositif pouvant mesurer des sources de plus faible émissivité, jusqu’à 103 s-1. Ce dispositif sera complémentaire de la technique du bain de manganèse et permettra d’élargir les capacités du laboratoire pour la caractérisation de sources neutrons. Il sera constitué d’un récipient de type Marinelli de gros volume pouvant accueillir la source et plusieurs types de détecteurs de neutrons en même temps : compteur proportionnel de type 3He par exemple, détecteur à scintillation, détecteur par activation neutronique. Le récipient sera rempli d’eau pour thermaliser les neutrons. La combinaison des techniques de mesure permettra d’optimiser la mesure du débit d’émission et de réduire les incertitudes.

Les mesures avec les différentes voies seront exploitées pour étudier la faisabilité d’une spectrométrie de la fluence neutronique de la source. En effet, la connaissance du spectre d’émission neutronique constitue aussi une étape importante de leur caractérisation pour un certain nombre d’applications. Cette partie fera d’objet de développements spécifiques pour mettre au point un algorithme de reconstruction de spectres. Ce travail est motivé par des études récentes réalisées au CEA/LIST/DM2I pour la caractérisation de sources de type PuBe, fabriquées par le CEA ATALANTE pour les besoins de la propulsion navale. Les résultats avaient en effet mis en évidence des écarts significatifs entre les spectres en énergie mesurés et ceux calculés à l’aide de différents codes de référence, par exemple SOURCES 4C. D’autre part, la connaissance du spectre en énergie des neutrons est aussi nécessaire pour estimer le débit d´équivalent de dose afin de mieux estimer la réponse d’instruments de radioprotection.

Impacts scientifiques et industriels

  • Réalisation de prestations d’étalonnage de sources neutrons en termes de débit d’émission neutronique et de mesure de spectre en énergie.
  • Extension de la gamme de mesure du laboratoire.
  • Amélioration des incertitudes de mesures.
  • Développement d’un outil de caractérisation des spectres en énergie de sources neutrons. De nombreux domaines d’application bénéficieront de ce type de développement : optimisation des champs neutroniques utilisés dans le démarrage de réacteurs embarqués, dosimétrie neutronique, caractérisation de détecteurs secondaires, etc.

Partenaires

CEA/LIST/DM2I/LCAE, Laboratoire Capteurs Architectures Electroniques

  • Collaboration sur la partie conception et réalisation du dispositif de mesure
  • Collaboration sur la partie spectrométrie neutron

CEA/DEN/DPN/STXN

  • Collaboration sur la partie spectrométrie neutron pour les sources de types PuBe

IRSN/LMDN, Laboratoire de Métrologie et de Dosimétrie des Neutrons

  • Collaboration sur la partie spectrométrie neutron

Le projet ANR Nantista (2014-2019) avait pour but de développer des architectures à base de réseaux de neurones artificiels pour l'identification de menaces radiologiques, dans le cadre de la surveillance aux frontières. La participation du LNE-LNHB à ce projet a conduit le laboratoire à une sensibilisation aux besoins métrologiques en termes d’algorithmes rapides et robustes pour l’identification automatique de radionucléides émetteurs gamma à faible statistique. Cette demande d’algorithmes spécifiques recouvre également d’autres domaines tels que les mesures environnementales in situ suite à un accident nucléaire ou radiologique avec rejet, pour le contrôle des déchets hospitaliers ou encore des accès aux sites nucléaires. Un des objectifs de ces algorithmes est de réduire l’intervention d’un expert dans la prise de décision.

Objectifs

Etendre le domaine d’application de l’algorithme développé à l’identification automatique à faible statistique de sources de neutrons.

Ouvrir le champ d’utilisation de l’algorithme à de nouvelles applications en surveillance de la radioactivité naturelle et de la radioactivité artificielle médicale ou industrielle, avec une intervention limitée d’un expert.

Résumé et premiers résultats

La participation du LNE-LNHB au projet ANR Nantista (2014-2019) a conduit à une sensibilisation du laboratoire aux besoins métrologiques en termes d’algorithmes rapides et robustes pour l’identification automatique de radionucléides émetteurs gamma. La demande d’algorithmes spécifiques recouvre divers domaines tels que la surveillance en temps réel des mouvements illicites de matières nucléaires dans l’espace public, pour le contrôle aux frontières et des sites nucléaires, les mesures environnementales in situ suite à un accident nucléaire ou radiologique avec rejet ou encore pour le contrôle des déchets hospitaliers. Un des objectifs importants de ces algorithmes est de réduire l’intervention d’un expert dans la prise de décision.

La nécessité d’effectuer une prise de décision robuste à faible statistique est une contrainte importante dans le développement d’algorithmes d’identification spécifiques aux portiques de détection pour la surveillance du trafic illicite de matières radioactives. Il s’agit d’une prise de décision rapide à faible statistique (de 1 000 à 5 000 événements en moyenne) sur la base de l’acquisition d’un spectre de quelques secondes au maximum. La prise de décision doit être couplée à une gestion robuste des fausses alarmes (taux de faux positifs égal à 0,1 %) notamment dans le cas des mélanges. De plus, ce type d’algorithmes doit pouvoir être implémenté en temps réel sur des cartes numériques embarquées. Afin de minimiser les coûts pour un déploiement à grande échelle, les portiques implantés pour le contrôle aux frontières sont équipés de détecteurs scintillateurs (NaI(Tl), plastiques) présentant l’inconvénient d’avoir une faible résolution en énergie.

L’identification automatique de radionucléides émetteurs gamma peut être définie comme un problème de détection d’anomalies dans le mouvement propre à partir d’un seuil de décision fonction du taux de fausses alarmes attendu. Pour répondre à cette problématique, un algorithme spécifique a été développé selon une approche métrologique au LNE-LNHB appliquée à la prise de décision à faible statistique. Avec une méthodologie basée sur le démélange spectral, il permet d’estimer les comptages pour chaque radionucléide recherché et une incertitude associée. Une première validation de cette nouvelle approche d’analyse spectroscopique a été réalisée dans le cas de l’utilisation d’un détecteur NaI(Tl) de 3"×3". L’objectif de la nouvelle étude est d’étendre l’utilisation du code d’identification à la détection de sources neutroniques grâce aux nouveaux détecteurs scintillateurs dopés avec du lithium-6 (p.e. NaIL développé par Saint Gobain) permettant la détection des neutrons thermiques par la réaction 6Li(n, α)3H. Il sera donc possible de proposer une discrimination plus élargie des types d’alarmes potentielles (radioactivité naturelle, radioactivité artificielle médicale ou industrielle) pour limiter les interventions d’un expert.

Impacts scientifiques et industriels

  • Répondre à la demande sociétale de systèmes d’identification automatique pour la surveillance en temps réel des mouvements illicites de matières nucléaires dans l’espace public, pour le contrôle aux frontières et des sites nucléaires.
  • Etudier et caractériser un nouvel outil d’analyse spectroscopique pour l’identification automatique fondée sur une détection mixte neutron/gamma basée sur l’utilisation d’un détecteur scintillateur NaIL.

Partenaires

  • CEA/IRFU pour l’optimisation du code d’identification
  • IRSN pour les mesures dans l’environnement
  • CEA/LCAE pour la surveillance aux frontières

Dans le cadre de ses activités d’amélioration de la connaissance de schémas de désintégration de radionucléides, le LNE-LNHB détermine des intensités absolues d’émission photonique, en s’appuyant sur des détecteurs étalonnés en rendement d’absorption totale. Ces étalonnages sont effectués au moyen de sources étalons avec des radionucléides dont les intensités d’émission sont bien connues et dont l’activité est déterminée par une méthode primaire. Dans la gamme d’énergie inférieure à 50 keV, il existe peu de radionucléides utilisables.

Objectifs

Etablir la courbe d’étalonnage en rendement d’absorption totale d’un détecteur au germanium hyper-pur (GeHP) dans la gamme d’énergie comprise entre 3 keV et 50 keV avec une incertitude-type relative inférieure ou égale à 1 %.

L’étalonnage doit être effectué sans recours à des radionucléides, au moyen d’un faisceau monochromatique dont le débit de fluence photonique sera déterminé au moyen d’un radiomètre cryogénique à substitution électrique. Le détecteur ainsi étalonné pourra être considéré comme un détecteur « absolu » et permettre la mesure directe d’activité.

Ce détecteur sera utilisé pour améliorer les techniques d’analyse X sans référence, actuellement développées sur la ligne de métrologie du synchrotron SOLEIL, et effectuer des mesures de paramètres atomiques (intensités d’émission, rendements de fluorescence, coefficients de Coster-Kronig) par fluorescence X induite par photo-ionisation.

Résumé et premiers résultats

Ce projet a pour but l’étalonnage « absolu » en rendement d’un détecteur à semi-conducteur (germanium hyper-pur – GeHP) dans la gamme d’énergie inférieure à 50 keV, avec une incertitude-type relative de l’ordre de 1 %, sans faire appel à des radionucléides. La mesure sera effectuée avec un faisceau de photons monochromatiques, sur la ligne de métrologie du synchrotron SOLEIL, qui est équipée d’un monochromateur à double cristal de silicium, permettant de fournir des photons monochromatiques dans la gamme d’énergie supérieure à 3 keV. Le flux de ce faisceau sera déterminé au moyen d’un radiomètre cryogénique à substitution électrique (RC), par comparaison entre l’élévation de température produite par le rayonnement incident et celle induite par une puissance électrique (étalonnée) sur le RC. Pour ce type d’étalonnage, le rendement sera déterminé point par point, pour des énergies discrètes.

Pour cela, le radiomètre cryogénique BOLUX, qui a déjà été utilisé pour étalonner des photodiodes jusqu’à 10 keV, sera remis en service et optimisé pour les mesures dans une gamme d’énergie supérieure, en adaptant en particulier le matériau de l’absorbeur de chaleur. Les effets d’échappements qui réduisent significativement le rendement du détecteur au-dessus des énergies de liaison du matériau pourront être évités en utilisant un absorbeur bicouches ou avec une nanostructure permettant réabsorber les photons d’échappement. Cette optimisation sera d’abord définie par des simulations de Monte Carlo, puis testée avec des faisceaux de photons monochromatiques en utilisant des photodiodes traditionnelles comme référence.

L’étalonnage électrique permettant de déterminer la puissance déposée dans le radiomètre sera effectué avec le souci de minimiser les incertitudes et la procédure d’équivalence puissance photonique/puissance électrique devra être examinée en détail et validée.

Contrairement aux étalonnages traditionnels qui s’appuient sur les intensités d’émission de radionucléides étalons, le détecteur ainsi étalonné pourra être considéré comme un détecteur « absolu » et permettre la mesure directe de l’activité des radionucléides. La principale retombée de cet étalonnage sera la mesure d’intensités d’émission X indépendamment des données tabulées, ce qui devrait permettre d’atteindre des incertitudes-types relatives de l’ordre de 1 %, et apporter de nouvelles informations sur les schémas de désintégration et les paramètres atomiques. Ce détecteur sera également utilisé pour améliorer les techniques d’analyse X sans référence, actuellement développées sur la ligne de métrologie du synchrotron SOLEIL.

 

Impacts scientifiques et industriels

La principale retombée de cet étalonnage sera la mesure d’intensités d’émission X indépendamment des données tabulées, ce qui devrait permettre d’atteindre des incertitudes-types relatives de l’ordre de 1 % et apporter de nouvelles informations sur les schémas de désintégration et les données atomiques (rendement de fluorescence et intensités relatives d’émission X). L’amélioration de la connaissance des intensités d’émission se traduit directement sur les mesures effectuées par spectrométrie X directe, par exemple pour caractériser les dosimètres niobium, utilisés pour le suivi des réacteurs, et sur l’ensemble des analyses par fluorescence X.

En particulier, le développement incessant de matériaux innovants, qu’ils soient nanostructurés ou fonctionnalisés, ne permet pas de disposer d’étalons spécifiques pour chaque cas. Pour ceux-ci, l’une des retombées de ce projet, à savoir la connaissance des paramètres atomiques couplée à l’utilisation d’un détecteur étalonné en rendement de manière absolue, va contribuer à développer les techniques d’analyse X sous incidence rasante sans référence afin de caractériser ces nouveaux matériaux. De nombreux domaines d’application (photovoltaïque, stockage de l’énergie, mémoires avancées, biologie, environnement, etc.) devraient bénéficier de ces avancées.

Partenaires

LCM-Cnam pour son expérience avec les radiomètres cryogéniques.

Synchrotron SOLEIL.

Résumé de la thèse

L'analyse isotopique des actinides est nécessaire pour le pilotage du cycle du combustible, le contrôle du traité de non-prolifération ou pour la surveillance environnementale. La précision de ces analyses peut être limitée par la performance du détecteur utilisé mais aussi par les incertitudes associées aux intensités d’émission disponibles dans les tables de données nucléaires. La désintégration des actinides est généralement suivie par d’intenses émissions de photons X et gamma dans la gamme d’énergie inférieure à 100 keV. Leur détection peut être intéressante pour l'analyse des actinides. Cependant, les techniques conventionnelles de mesure ne permettent pas de séparer correctement les raies des émissions concernées. Cette thèse a été consacrée à la mesure des intensités à l’aide d’un détecteur cryogénique. Ce dernier est basé sur un calorimètre métallique magnétique (MMC) qui permet de mesurer le dépôt d’énergie sous forme d’une élévation de température. Le MMC, appelé SMX3, comporte quatre pixels ; il est spécifiquement conçu pour la spectrométrie X et gamma de haute résolution dans la gamme d'énergie inférieure à 100 keV en vue de la mesure des intensités d’émission des actinides. Outre la haute résolution fournie par SMX3, due à son principe de fonctionnement, ce détecteur possède un rendement de détection constant et quasiment égal à 100% dans la gamme d'énergie inférieure à 25 keV, où les rayons XL des actinides sont émis. La courbe de rendement de SMX3 a été étalonnée par une méthode qui consiste en une mesure d’une seule source étalon d’Am-241 combinée à des simulations Monte Carlo. Les trois actinides Pu-238, Pu-239, et Cm-244 ont été mesurés afin de fournir des intensités absolues et relatives des émissions Li-Yj (avec Y=L,M,N,O,P i=1,2,3 et j=1..7). Grâce à la très haute résolution en énergie du MMC, les raies XL individuelles des actinides peuvent être séparées. Les raies satellites sont aussi détectées, leurs intensités relatives aux raies diagrammes dépendent de l’isotope en fonction des paramètres fondamentaux atomiques. Les intensités des raies XL individuelles ont pu être déterminées pour la première fois, notamment pour les transitions L₁-L₃. De plus, les intensités des régions XLi (i=1,2,3) ont été établies. Les intensités des groupes XL et XL globale sont comparées avec les calculs et les données expérimentales disponibles dans la littérature.

Mots clés

spectrométrie X, spéctrométrie gamma, actinide, calorimètre métallique magnétique, Monte-Carlo, bolomètre

Texte intégral

Résumé de la thèse

En France, les références associées à la fluence neutronique et aux grandeurs dosimétriques dérivées sont détenues par le Laboratoire de Métrologie, de micro-irradiation et de Dosimétrie des Neutrons (LMDN) de l’IRSN. Afin d’améliorer la définition des références en énergie et en fluence des champs neutroniques monoénergétiques de l’installation AMANDE, le LMDN s’est engagé dans le projet de développement d’un détecteur gazeux μTPC (microTime Projection Chamber) appelé LNE-IRSN-MIMAC en collaboration avec le LPSC. Dans une précédente thèse, la mesure de champs neutroniques entre 27 keV et 565 keV a été réalisée. L’objectif de ce travail de thèse est d’étendre la gamme de mesure au-delà de 1 MeV. Le choix du gaz, le développement d’une méthode d’analyse indépendante de l’utilisateur et la caractérisation du détecteur ont ainsi permis de valider la capacité du détecteur LNE-IRSN-MIMAC à réaliser des mesures dans des champs neutroniques monoénergétiques entre 250 keV et 6,5 MeV avec une précision de 3% en énergie et de 2,5% en fluence.

Mots clés

chambre à projection temporelle, spectromètre neutron, diffusion élastique, étalon primaire

Texte intégral

Résumé de la thèse

Les nouveaux matériaux de type chalcogénures (à base de S, Se, Te) font l’objet d’un intérêt croissant, non seulement pour les applications mémoires avancées, photonique et photovoltaïque, mais également autour des matériaux dichalcogénures innovants à base de métaux de transition (MoS₂, WS₂, ..). Les propriétés de ces matériaux, réalisés sous forme d’alliages binaires ou ternaires, avec ou sans dopage, dépendent fortement de leur composition, du profil de composition dans ces couches très fines, ainsi que des conditions de surface et d’interface (préparation, passivation). La maîtrise des propriétés de ces couches fines, déposées par voie chimique (CVD) ou par co-pulvérisation cathodique magnétron, doit s’appuyer sur des nouveaux protocoles de caractérisation aux incertitudes optimisées et compatibles avec un contrôle de fabrication en ligne. Dans cette thèse, nous présentons les performances de protocoles de métrologie spécifiquement développés pour l’analyse de couches minces de chalcogénures. Ces protocoles, qui s’appuient essentiellement sur les techniques non destructives de spectroscopie de photoélectrons (XPS) et de fluorescence X (XRF), ont été optimisés pour la caractérisation surfacique des couches ultrafines, l’analyse quantitative de la composition des matériaux complexes à base de tellure ou de soufre, et la mesure du profil de composition dans des couches et empilements < 50 nm. Dans un premier temps, nous présentons l’étude par XPS quasi in situ des propriétés de surface des matériaux Ge, Sb, Te ainsi que de leurs composés binaires et ternaires. Nous mettons en évidence l’évolution de la surface après remise à l’air puis vieillissement, et nous comparons l’efficacité de stratégies d’encapsulation in situ de couches minces à base de Te et Se. Nous démontrons ensuite les performances de protocoles d’analyses par XRF à dispersion de longueur d’onde (WDXRF) et XPS pour la quantification précise de la composition chimique de composés Ge-Sb-Te (de 1 à 200 nm) et de couches ultrafines de dichalcogénures à base de métaux de transition (MoS₂, WS₂). L’analyse combinée WDXRF/XPS permet de mesurer l’évolution avec la composition des facteurs de sensibilité relative des composantes Ge3d, Te4d et Sb4d, et par conséquent d’améliorer la précision de mesure par XPS de la composition des matériaux à changement de phase de type GexSbyTez. Nous soulignons également l’influence des effets de matrice sur la capacité de la WDXRF à l’analyse quantitative de l’azote dans des matériaux Ge-Sb-Te. Nous évaluons la possibilité d’un étalonnage de la WDXRF fondé sur des analyses par faisceaux d’ions spécifiques, ce qui permet in fine un suivi en ligne de couches GeSbTeN dans une fenêtre procédé donnée. Enfin, nous présentons deux stratégies de caractérisation non destructive du profil de composition dans des couches minces de chalcogénures. D’une part, nous démontrons que la combinaison des techniques de XRF en géométrie d'incidence rasante (GIXRF) et de réflectométrie X (XRR) permet une mise en évidence non ambiguë de faibles variations dans les procédés de dépôts, voire de phénomènes de diffusion dans des empilements de 10 nm d'épaisseur. L'utilisation de substrats multicouches en lieu et place du silicium permet d’optimiser la distribution en profondeur du champ d'ondes stationnaires, ce qui conduit à une amélioration nette de la sensibilité des stratégies XRR / GIXRF. D’autre part, nous montrons l’adéquation de protocoles fondés sur l’analyse XPS résolue en angle pour la caractérisation du profil de composition dans des couches nanométriques de GeTe et Ge₂Sb₂Te₅, ce qui permet une étude fine des premières étapes de dépôt de ces matériaux.

Mots clés

XRF, matériaux 2-D, mémoires, XPS, chalcogénures, métrologie des rayons-X

Texte intégral

Résumé de la thèse

La dosimétrie en réacteur permet de déterminer la fluence neutronique reçue pendant une irradiation et d’en caractériser le spectre (distribution énergétique des neutrons). Cette technique s’appuie sur la mesure de l’activité de dosimètres irradiés, constitués de métaux purs ou d’alliages. La mesure d’activité de ces échantillons est réalisée par spectrométrie gamma et X sur des rayonnements de faibles énergies (< 100 keV) et s’appuie actuellement sur un dosimètre étalon adapté et validé spécifiquement pour les conditions de mesure. Le but de la thèse est de s’affranchir de cette étape et de pouvoir mesurer directement l’activité des dosimètres. L’étude a concerné spécifiquement les dosimètres en niobium et en rhodium qui sont utilisés pour caractériser la signature des neutrons d’énergie autour de 1 MeV. Ils sont respectivement activés en Nb-93m et 1Rh-103m. Ces deux radionucléides se désintègrent par une transition gamma en émettant principalement des photons XK d’énergie autour de 20 keV, sur lesquels s’appuie la mesure d’activité en spectrométrie. Or, du fait de leur faible énergie, ces rayonnements présentent de nombreuses difficultés pour être analysés avec précision. Les différents paramètres nécessaires à la quantification de l’activité des dosimètres, avec une incertitude relative de l’ordre de 2 %, ont été étudiés en détails. Les travaux ont d’abord porté sur l’étalonnage en rendement des détecteurs au germanium hyper-pur (GeHP) dans la gamme d’énergie comprise entre 11 keV et 150 keV. Ceci constitue une étape cruciale dans la détermination de l’activité et s’avère délicate dans la gamme d’énergie considérée. L’approche expérimentale, utilisant des sources ponctuelles étalons, a été couplée à des modélisations semi-empiriques et à des simulations des interactions rayonnements-matière par des méthodes Monte Carlo (PENELOPE et GEANT4). Ces dernières ont permis d’approfondir l’étude du phénomène de diffusion des photons en basse énergie, aux alentours de 20 keV, qui interfère avec les pics d’absorption totale dans les spectres et perturbe leur analyse. Dans un second temps, les simulations de Monte Carlo ont également été utilisées pour établir les facteurs de corrections nécessaires à la mesure des dosimètres : auto-absorption du rayonnement dans le matériau et changement de géométrie entre les conditions d’étalonnage (source ponctuelle) et les conditions de mesure (échantillon métallique massif). Le phénomène de fluorescence lié à la présence d’impuretés (dans le matériau du dosimètre ou créées lors de l’irradiation en réacteur) a été étudié et les facteurs de corrections à appliquer pour en tenir compte ont été établis. Les données du schéma de désintégration, en particulier les intensités d'émission des rayons X, sont les principales composantes de l'incertitude sur la valeur d'activité des dosimètres. Les intensités d'émission X font rarement l'objet de mesures expérimentales, le plus souvent, leurs valeurs découlent du schéma de désintégration et des données fondamentales nucléaires et atomiques de l'élément tels les coefficients de conversion interne et le rendement de fluorescence. Plusieurs expériences ont été menées pour fournir de nouvelles données expérimentales. Les coefficients d’atténuation massique et les rendements de fluorescence K du niobium et du rhodium ont été déterminés en utilisant un rayonnement photonique monochromatique sur le synchrotron SOLEIL. Les intensités d’émission du Rh-103m ont été mesurées suivant deux approches, l’une à partir de rhodium activé au réacteur ISIS et l’autre à partir d’une solution de palladium-103. Toutes ces nouvelles valeurs sont comparées aux données publiées et le schéma de désintégration du Rh-103m est discuté.

Mots clés

mesure de radioactivité, spectrométrie X, spectrométrie gamma, dosimétrie en réacteur, simulation Monte Carlo, radioactivité,, neutron, niobium, rhodium

Texte intégral

Résumé de la thèse

La curiethérapie électronique, également appelée radiothérapie de contact, est une technique de traitement du cancer utilisant des rayons X de faible énergie (≤ 50 keV) générés par des tubes à rayons X miniaturisés et positionnés au contact des tissus à irradier. La miniaturisation des générateurs à rayons X a conduit au développement de nouveaux systèmes de traitement, dont le plus répandu dans le monde et le seul utilisé en France est le système INTRABEAM® commercialisé par la société Zeiss. Au-delà du bénéfice médical, les avantages potentiels de la curiethérapie électronique sont une diminution drastique de l'inconfort du patient combinée à un moindre coût de traitement. Ainsi, dans le cadre du cancer du sein qui correspond à l’application principale de l’INTRABEAM, cette technique remplace la trentaine de séances de radiothérapie externe classiquement prescrite suite à l’exérèse du volume tumoral par une seule et unique séance délivrée en 20 à 50 minutes au bloc opératoire directement après l’acte chirurgical alors que la patiente est encore sous anesthésie. Cette radiothérapie peropératoire (RTPO) associe au mini générateur de rayons X des applicateurs qui, en sénologie, correspondent à des sphères de différents diamètres conçues pour épouser au mieux la cavité tumorale résultant de l’exérèse. La dose délivrée en RTPO est classiquement de l'ordre de 20 Gy en surface du lit tumoral et diminue rapidement avec la profondeur afin de préserver les tissus sains voisins (< 1 Gy après quelques cm). En France, le 1er traitement par RTPO a eu lieu à Nantes fin 2011. Aujourd’hui, une dizaine de centres hospitaliers français propose des traitements par RTPO au moyen de la technique INTRABEAM®. Très rapidement, plusieurs physiciens médicaux ont exprimé au laboratoire français de métrologie de la dose (LNHB), leur besoin de raccordement dosimétrique à une référence indépendante du constructeur. Ce besoin a été réaffirmé par la Haute Autorité de Santé (HAS) dans un rapport sur l’évaluation de la RTPO dans le cancer du sein, édité en avril 2016. Le présent travail vise à renforcer la sécurité d’emploi d’appareils de RTPO par rayons X de basse énergie (< 50 keV). Cependant, afin de répondre aux physiciens médicaux français et du fait de contraintes temporelles, l’étude est ici limitée au système INTRABEAM associé au seul applicateur sphérique de 4 cm de diamètre. Le travail a été articulé autour de trois axes. Le premier a concerné l’établissement et le transfert d’une référence primaire en termes de dose absorbée dans l’eau à 1 cm de profondeur. La méthodologie a été développée et ensuite appliquée pour le système INTRABEAM® associé à un applicateur sphérique de 4 cm, pour lequel, la référence primaire a été réalisée. Le deuxième axe a eu pour objet la détermination de la distribution spatiale de dose autour de la source considérée par l’utilisation de gels dosimétriques et par calcul de type Monte Carlo. L’hydrogel à base de Fricke, utilisé ici, est lu par imagerie par résonance magnétique à l’hôpital d’Orsay. Ce gel a été étalonné en dose pour des photons d’énergie inférieure à 50 keV puis utilisé pour déterminer les profils de doses autour de la source INTRABEAM® associée à l’applicateur sphérique de 4 cm de diamètre dans les plans axial et transverse incluant le centre de la source INTRABEAM®. Quant au dernier axe, il s’est agi de confronter des données dosimétriques fournies par la société Zeiss, concernant l’INTRABEAM® en utilisation à l’hôpital St-Louis à Paris, à celles obtenues au cours de la présente étude pour le même système. Des différences significatives ont été trouvées entre les doses délivrées par Zeiss et celles obtenues dans la présente étude. Une étude indépendante menée par le PTB pour une autre configuration de source INTRABEAM® a conduit à des observations comparables. L’approche adoptée par Zeiss a ainsi été investiguée dans le présent travail et une cause de divergence a été proposée.

Mots clés

Radiothérapie de contact, Référence Primaire ; Curiethérapie électronique, Rayonnements X de basses énergies, Intrabeam, Axxent, Radiothérapie peropératoire, Dosimétrie, Rayonnements ionisants - Dosage.

Texte intégral

Résumé de la thèse

Les protocoles de traitement du cancer par Radiothérapie Conformationnelle par Modulation d'Intensité (RCMI) ciblent avec une précision de plus en plus grande la tumeur. Pour cela, ils nécessitent des informations anatomiques précises du patient juste avant le traitement, qui peuvent d'être obtenues à l'aide de systèmes d'imagerie embarqués sur l'accélérateur linéaire médical délivrant le faisceau de traitement. Ces systèmes, composés d'un tube à rayons X et d'un détecteur 2D planaire, sont appelés kV-Cone Beam CT (kV-CBCT). Aujourd'hui, leur usage est très fortement répandu dans le cadre des traitements par RCMI. Cependant, ces examens kV-CBCT sont responsables d'une dose de rayonnements ionisants additionnelle qui est loin d'être négligeable et pouvant d'être à l'origine de l'apparition d'effets secondaires, tels que des cancers radio-induits chez les patients traités. Au cours de cette thèse, un simulateur basé sur la méthode de Monte-Carlo a été développé permettant ainsi d'estimer avec précision les doses délivrées aux organes lors des examens d'imagerie kV-CBCT. Cet outil a ensuite été utilisé afin d'étudier différentes stratégies de prise en compte clinique de ces doses additionnelles. L'étude présentée dans ce manuscrit propose notamment une méthode rapide d'estimation des niveaux de doses délivrés aux organes prenant en compte la morphologie de chaque patient. Cette stratégie a été développée à partir d'une cohorte de 50 patients incluant 40 enfants et 10 adultes. Ces travaux ont été réalisés en collaboration avec l'unité de physique médicale du Centre Eugène Marquis à Rennes qui a fourni les données cliniques nécessaires à l'étude.

Mots clés

simulation Monte-Carlo, tomographie, dose,  Méthode de Monte-Carlo, tomographie, irradiation à faible dose

À la demande des fabricants de dosimètres et des utilisateurs, le LNE-LNHB a proposé de développer une référence métrologique pour la dosimétrie des rayonnements de haute énergie en radioprotection des travailleurs (6 à 7 MeV) sur l’accélérateur linéaire Varian Truebeam du LNE-LNHB de la plateforme DOSEO.

Objectifs

Produire un faisceau de photons de haute énergie pour la radioprotection sur l’accélérateur Varian TrueBeam installé sur la plateforme DOSEO.

Caractériser ce faisceau en termes de kerma dans l’air et d’équivalents de dose.

Faciliter la dissémination de cette nouvelle référence par la mise en place de procédures formalisant le transfert de la référence via l’étalonnage d’un détecteur au LNE-LNHB ou via le raccordement d’un autre laboratoire.

Établir un protocole pour une future comparaison internationale.

Contexte

À la demande des fabricants de dosimètres et des utilisateurs, le LNE-LNHB propose de développer une référence métrologique pour la dosimétrie des rayonnements de haute énergie en radioprotection des travailleurs (6 à 7 MeV) sur l’accélérateur linéaire Varian Truebeam du LNE-LNHB de la plateforme DOSEO. L’établissement de cette référence fait appel aux techniques de mesure classiques en métrologie des photons de haute énergie (chambre d’ionisation à cavité ouverte) pour mesurer la grandeur primaire : le kerma dans l’air. C’est à partir de cette grandeur que sont calculées les grandeurs de radioprotection (équivalents de dose) au moyen de coefficients de conversion. Ces derniers seront déterminés au moyen de calculs de transport du rayonnement fondés sur la méthode Monte-Carlo.

Image
Configuration de mesure HEA-RI-08
Configuration de la mesure sur l'accélérateur Varian de la plateforme DOSEO.

 

Résultats et perspectives

La première étape du projet a consisté en la modélisation du cône égalisateur qui était utilisé sur l’installation DELPHES afin de pouvoir calculer les faisceaux de rayonnements obtenus lorsque ce dernier est fixé sur le TrueBeam, et notamment la distribution spectrale de la fluence selon l’angle d’incidence des photons sur l’axe du faisceau et en dehors de l’axe. En conclusion de la partie théorique de l’étude, les résultats obtenus sont similaires en termes d’énergie moyenne et de coefficients de conversion avec ceux obtenus sur l’installation DELPHES.

Ensuite, un ensemble de réalisations mécaniques préparatoires ont été menées afin de permettre l’installation de l’ensemble « cible-cône égalisateur » sur l'accélérateur TrueBeam. Puis plusieurs campagnes de mesures ont été menées au cours de ce projet. Il s’agissait dans un premier temps de caractériser la chambre d’ionisation et le faisceau. Une fois cela effectué, la mesure de la référence a pu être réalisée.

Le laboratoire a ensuite définit les étapes nécessaires à la réalisation de la référence nationale et au transfert de cette dernière à un utilisateur final. Les procédures de mesure primaire (établissement de la référence nationale), de transfert de la référence à un utilisateur final et de réalisation d’une comparaison international ont été rédigées et testées. Le bilan d’incertitude obtenu pour l’étalonnage d’un dosimètre de transfert est bien inférieur à celui proposé par nos homologues, la raison en est que notre référence est directement adossée à une mesure primaire ce qui n’est pas le cas de nos homologues qui doivent passer par une mesure de transfert « secondaire ».

L’ensemble du travail prévu a été réalisé. Cependant, l’installation du système de cible-filtre égalisateur n’est pas satisfaisante au regard du profil de faisceau mesuré qui est trop irrégulier ; une étude Monte Carlo est à prévoir pour préciser l’origine de la forme du profil et permettre de le corriger. La chambre d’ionisation SP004 ayant été endommagée lors d’expérimentation précédente, une requalification de son volume interne de collecte sera nécessaire. Une fois c’est deux dernières étapes terminées, la comparaison avec nos homologues pourra être organisée et les prestations pourront être reprises.

Impacts scientifiques et industriels

Avec l’arrêt de l’installation Delphes en octobre 2018, le rayonnement de référence concernant les énergies de 6 à 7 MeV pour la radioprotection n’est plus produit en France. L’établissement d’une telle référence sur le LINAC TrueBeam, objet de ce projet, permettra de conserver les possibilités existantes d’étalonnage des dosimètres et débitmètres de radioprotection par le LNE-LNHB (de 8 keV à environ 7 MeV).

La dissémination des références au niveau international, dans le plus grand nombre possible de pays, est un facteur essentiel permettant la comparaison des résultats. Ce n’est pas le cas aujourd’hui avec les procédés de production de faisceau de photons de haute énergie qui sont « lourds » et coûteux.  La mise au point par le LNE-LNHB de champs de rayonnements produits sur un LINAC et leur future intégration dans les spécifications des normes ISO participera à la reconnaissance internationale des travaux du laboratoire dans un contexte concurrentiel.

La France disposera de champs de rayonnements couvrant le domaine des photons de haute énergie et caractérisés en termes dosimétriques pour l’étude (avec les industriels) de nouveaux dosimètres pour la radioprotection des travailleurs et pour l’étalonnage de ces dosimètres (pour les industriels et les exploitants).