Ce projet européen vise à améliorer la traçabilité métrologique pour la mesure des principales variables climatiques essentielles (VCE) définies par le Système d'observation global du climat (GCOS, Global Climate Observing System). Cela permettra de répondre aux besoins d’amélioration d’exactitude dans les mesures de paramètres environnementaux et d’aider les climatologues dans la mise en place de modèles fiables concernant le changement climatique.

Objectifs

Améliorer la traçabilité métrologique pour la mesure des principales variables climatiques essentielles définies par le Système d'observation global du climat

Résumé et premiers résultats

Image
Vue d'un résonateur microonde quasi-sphérique pour la mesure d'humidité
Résonateur microonde

Le projet est structuré en trois lots de tâches, chacun couvrant un domaine d’observation différent : l’air, les océans et le sol. Les VCE considérées sont : la vapeur d'eau dans l'atmosphère, la température dans les océans, la salinité, la température de l’air, le niveau de précipitation, la mesure de l’albédo, la température de pergélisol et l'humidité du sol. Les laboratoires du réseau national de la métrologie française interviennent dans les travaux pour améliorer : la traçabilité de la mesure de certaines variables essentielles climatique océaniques (température, salinité), et les mesures d’humidité dans la haute atmosphère.

 

Mesures dans l’air

Conception et réalisation d’un dispositif expérimental pour étudier le facteur d’augmentation dans des conditions proches de celles rencontrées dans l’atmosphère et la haute atmosphère

Le facteur d’augmentation de la pression de vapeur saturante (noté f) intervient dans plusieurs modélisations utilisées pour les mesures d’humidité. La plupart des données expérimentales permettant de le calculer, datent au mieux des années 1970, et concernent des plages de température et de pression trop limitées pour les applications en climatologie.

Le LNE-CETIAT a développé un banc permettant de faire des mesures du facteur d’augmentation. Le principe consiste à générer un air humide dont le rapport de mélange est connu (à partir d’air sec et d’eau pure), et à injecter cet air humide dans une enceinte dont la pression est contrôlée et la température de rosée/gelée mesurée. La connaissance de ces différentes grandeurs permet de calculer le facteur d’augmentation.

Le banc  développé  permet  de  générer  un air humide sur une gamme de température allant de –60 °C à –30 °C et une gamme de pression allant de 40 kPa à 100 kPa. Les mesures du facteur d’augmentation ont été présentées au Congrès international de métrologie de 2017 et sont soumises pour publication

 

Image
Aperçu de la supervision du banc sur laquelle on distingue les systèmes d’injection d’eau et d’air sec dans un évaporateur avant que le gaz soit acheminé vers une enceinte, et, exemple de paliers d’humidité générés pour une pression donnée.
Aperçu de la supervision du banc (à gauche) et exemple de paliers d'humidité (à droite)

 

Développement d’un dispositif de génération d’humidité permettant le changement rapide d’humidité dans des conditions proches de celles rencontrées dans la basse atmosphère

Les travaux visent à mieux connaître la réponse des hygromètres dans les conditions d’utilisation, il s’agit d’un besoin très vaste en hygrométrie qui n’est pas seulement limité à la climatologie et concerne aussi les mesures industrielles. Le CETIAT a mis en œuvre un banc permettant de générer des échelons d’humidité croissants ou décroissants pour différentes températures. Le principe de fonctionnement du banc consiste à exposer l’instrument de mesure en essai à un débit d’air humide et un débit d’air sec. L’échelon d’humidité est généré en faisant varier brusquement la valeur du débit d’air humide et la valeur du débit d’air sec tout en maintenant la valeur de la somme des débits constante. L’hygromètre dont on veut déterminer les performances est placé dans une chambre d’essai qui est elle-même placée dans une enceinte thermostatée pour imposer la température de l’essai. Le CETIAT a utilisé un hygromètre développé par la PTB (DE) utilisant des techniques spectroscopiques fournissant une référence pour la détermination du temps de réponse des instruments en essais.

Image
Vue du système d’injection de l’air humide et de l’air sec en amont de l’enceinte thermostatée, et, vue de l’enceinte avec une chambre d’essai à l’intérieur et un hygromètre à condensation en sortie d’enceinte
Vue du système d'injection de l'air humide et de l'air sec (à gauche) et vue de l'enceinte avec une chambre d'essai (à droite)

 

Développement de capteurs d'humidité traçables basés sur des résonateurs microondes avec un temps de réponse faible et de taille réduite

Dans le cadre d’un précédent projet européen, le LNE-LCM/Cnam a conçu un nouveau type d’hygromètre basé sur deux résonateurs micro-ondes. Le principe de cet hygromètre consiste à mesurer les fréquences de résonance de deux résonateurs identiques, l’un remplit de gaz sec et l’autre du même gaz humide. L’humidité est déduite de la différence entre les deux fréquences de résonance.

Un premier prototype d’hygromètre micro-onde (résonateurs de 200 cm3) a été développé. Il fonctionne entre –50 °C et 10 °C (température du point de gel) et de –20 °C à 20 °C (température du point de rosée). La plage de mesure s’étend de 3 ppmv (parties par million en volume) à 105 ppmv et l'incertitude de mesure est proche de 1 ppmv.

Cependant, le temps de mesure est d'environ 100 secondes, ce qui est considéré comme trop long. Un second prototype a été réalisé (volume 30 cm3) fonctionnant de –50 °C à 10° C (température du point de gel) et de –20 °C à 20 °C (température du point de rosée). La plage de mesure s’étend de 3 ppmv à 105 ppmv, l'incertitude est proche de 1 ppmv. Les deux hygromètres à micro-ondes ont été comparés avec un hygromètre à miroir refroidi étalonné par le CETIAT. Les résultats ont montré qu'il pourrait s'agir d'un étalon alternatif pour les mesures d'humidité.

Image
Schéma de principe de l’hygromètre et vue des deux résonateurs en cours de montage
Schéma de principe de l'hygromètre (à gauche) et vue des deux résonateurs en cours de montage (à droite)

 

Mesures dans les océans

Caractérisation de thermomètres océanographiques

Le LNE-LCM/Cnam a modifié un thermomètre à gaz acoustique et le calorimètre associé, afin de pouvoir y insérer et étalonner les thermomètres utilisés pour les mesures au fond des océans de -5 °C à 35 °C, avec une incertitude d'étalonnage inférieure à 0,5 mK. Auparavant, les meilleures incertitudes d'étalonnage réalisables avec thermomètres océaniques de haute qualité étaient proches de 2 mK. Elles pourraient être encore réduites de manière à atteindre l'incertitude globale de 2 mK sur les mesures de température océanique en profondeur, ce qui est la valeur requise par le World Ocean Circulation Experiment (WOCE) Hydrographic Program9. Pour aller plus loin vers cet objectif, il restera cependant à évaluer l'adéquation des thermomètres pour les mesures en profondeurs dans les océans avec une telle incertitude.

                                                      

Caractérisation métrologique de salinomètres de nouvelle génération

Dans le cadre du JRP ENV58 MeteoMet2, le LNE-LCM/Cnam s’est impliqué dans la caractérisation métrologique d’un nouveau type de salinomètre, nommé NOSS, basé sur la mesure de l’indice de réfraction de l’eau, développé par un consortium de recherche français (Télécom Bretagne, Ifremer, SHOM, NKE Instrumentation), dont la commercialisation est confiée à l’entreprise française NKE Instrumentation. Le point innovant de ce capteur est sa capacité de mesurer in-situ la masse volumique de l’eau de mer, alors que les salinomètres actuels utilisés in-situ ne mesurent que la conductivité électrique de l’eau, la reliant à la masse volumique par des relations empiriques et dont la traçabilité au SI ne peut être établie. Cet instrument a été caractérisé métrologiquement afin d’aider à son déploiement commercial.

 

Site du projet :

http://www.meteomet.org/

Impacts scientifiques et industriels

  • Impact général du projet : améliorer la qualité des données climatiques.
  • Impacts par grandeurs : maîtrise de l’humidité en régime transitoire, maîtrise de la mesure de température à haute pression, maîtrise de la mesure de salinité, etc.

Publications et communications

SPARASCI F., JOUIN D., DEUZÉ T., BORDEREAU J., COEUR-JOLY G., SOURGEN D. et HERTZOG A., “Submillimetre thermistors for balloon-borne applications up to lower stratosphere: preliminary characterization with 0.02K uncertainty”, Meteorol. Appl. , 2015, DOI: 10.1002/met.1504

MERLONE A. et al., “The MeteoMet project – metrology for meteorology: challenges and results”, Meteorol. Appl., 22, S1, 2015, 820-829, DOI: 10.1002/met.1528

MERLONE A. et al., “The MeteoMet2 project – Highlights and results”, Meas. Sci. Technol., 2017, DOI: 10.1088/1361-6501/aa99fc

SPARASCI F., “Calorimetric techniques for the calibration of environmental sensors: application to thermistors and salinometers”, Arctic Metrology Workshop, 23 Avril 2015, Turin, Italie

CAPELLA A., PITRE L., SPARASCI F. et GEORGIN E., “Differential Microwave Hygrometer with Quasi-Spherical Resonators for Accurate Humidity Measurements on a Wide Range, 9th Symposium on thermophysical properties”, Boulder USA, juin 2015

KLEIN A. et al., “Detection techniques for online and on-site monitoring of essential climate variables in the upper atmosphere”, International Workshop on Metrology for Meteorology and Climate MMC 2014, Brdo, Slovenia, septembre 2014

CAPELLA A. et al., “Differential quasi-spherical resonant cavity hygrometer for atmospheric moisture”, International Workshop on Metrology for Meteorology and Climate MMC 2014, Brdo, Slovenia, septembre 2014

GARCÍA IZQUIERDO C. et al., “Metrology for terrestrial and surface ECVs involved in METEOMET2”, International Workshop on Metrology for Meteorology and Climate MMC 2014, Brdo, Slovenia, septembre 2014

SPARASCI F. et al., “Novel methods, instruments and measurements for climate parameters: achievements in JRP METEOMET”, International Workshop on Metrology for Meteorology and Climate MMC 2014, Brdo, Slovenia, septembre 2014

SPARASCI F., “Novel environmental sensors: improving measurements in the arctic”, Arctic Circle Assembly, 15-18 Octobre 2015, Reykjavik, Islande

NICOLA CHIODO, ANDREA CAPPELLA, LAURENT PITRE, FERNANDO SPARASCI, LARA RISEGARI, MARK D.  PLIMMER et ERIC GEORGIN, “Differential microwaves hygrometer for moisture measurements on a wide water vapor concentration range” Tempmeko2016,  Zakopane, Poland, 26 juin - 1er juillet 2016

GARCÍA IZQUIERDO C. et al., “Metrology for terrestrial and surface ECVs”, Tempmeko 2016, Zakopane, Poland, 26 june – 1 july 2016

CHIODO N. et al., "Differential microwaves hygrometer for moisture measurements on a wide water vapor concentration range”, MMC-2016, Madrid, Espagne, 26-29 septembre 2016

GEORGIN E., « Projet : JRP ENV 58 METEOMET, Métrologie & Météorologie : la mesure au service de la prévision », Paris, France, 6 décembre 2016

SPARASCI F., “MeteoMet: Metrology for Essential Climate Variables”, 1st EU Environmental Research Infrastructures – Industry Joint Innovation Partnering Forum, 18-19 May 2017, Grenoble

SPARASCI F., P. Alberto Giuliano Albo, Marc Le Menn, Damien Malardé, “Development of calibration facilities for oceanographic temperature and salinity sensors”, Meteomet week, Turin, Italie, 11- 15 septembre 2017.

CHIODO N. et al., “Differential microwave hygrometer for high precision measurements over a wide humidity range: recent progress”, Meteomet week, Turin, Italie, 11- 15 septembre 2017.

SPARASCI F., co-animation de la table ronde “Métrologie”, Atelier Expérimentation et Instrumentation AEI 2017, Brest, France, 17-19 Octobre 2017

Partenaires

  • INRiM (IT),
  • BEV/PTP (AT),
  • CEM (SP), CETIAT (FR),
  • CMI (CZ), CNAM (FR),
  • CSIC (SP), DTI (DK),
  • IMBiH (BA),
  • MIKES (FI),
  • NPL (UK),
  • PTB (DE),
  • SMD (BE),
  • TUBITAK (TK),
  • UL (SI),
  • VSL (NL),
  • SHOM (FR)