Ce projet a pour but de réaliser l’ampère selon la nouvelle définition entrée en vigueur en 2019. L’idée est de construire un étalon quantique de courant électrique qui intègre un étalon quantique de résistance et un étalon quantique de tension pour réaliser directement la loi d’Ohm. L’objectif est également de disposer d’un étalon de courant programmable, facile à mettre en œuvre et directement exploitable pour assurer la traçabilité des étalonnages des laboratoires aux étalons nationaux.

Objectifs

Développer une traçabilité de l’ampère telle que définie dans le SI (26e CGPM 2018), à partir des étalons quantiques de résistance et de tension électrique, c’est-à-dire établir une relation directe entre l’étalon quantique de l’ampère et la charge élémentaire ;

Réaliser un générateur quantique de courant programmable (PQCG) et un ampèremètre quantique programmable (PQA) à partir d’un étalon quantique de courant programmable (PQCS), fondé sur l’application de la loi d’ohm aux étalons quantiques de résistance et de tension en mettant en œuvre la technique de multiple connexion de l’EHQ et le comparateur de courant cryogénique ;

Réaliser et mesurer des courants de 1 μA à 10 mA, avec une incertitude inférieure à 1×10-8 en valeur relative, soit améliorer de deux ordres de grandeur les mesures déclarées jusque-là et générer des courants supérieurs de 106 à 107 fois ceux produits par des pompes à électrons.

Résumé et résultats

L’ampère est l’une des 7 unités de base du Système international d’unités, servant de référence aux mesures des grandeurs électriques. Depuis 1948, sa définition reliait l’unité aux unités mécaniques classiques (mètre, kilogramme et seconde). Avant le 20 mai 2019, la définition de l’ampère ne pouvait pas être réalisée (mise en pratique) avec le niveau d’incertitude requis pour les besoins de mesure. C’est pourquoi, en pratique, l’ampère était réalisé, depuis une trentaine d’années, en exploitant la loi d’Ohm appliquée à des étalons de tension et de résistance raccordés aux étalons quantiques obtenus par une mise en œuvre de l’effet Josephson et de l’effet Hall quantique, respectivement. Les meilleures incertitudes déclarées par les laboratoires nationaux de métrologie, dans la gamme 1 μA à 10 mA, étaient supérieures à 10-6 en valeur relative.

En 2018 les valeurs numériques de la constante de Planck h et de la charge élémentaire e dans le SI ayant été fixées, la constante de Josephson (KJet la constante de von Klitzing (RK) ont dès lors eu également des valeurs exactes (sans incertitude) puisque : KJ = 2e/h et RK = h/e2.

Le projet est né dans le contexte de cette évolution des définitions du SI et du besoin d’effectuer les mesures de référence au meilleur niveau métrologique. Et dès 2014 l’idée s’est concrétisée au LNE de développer une traçabilité directe de l’ampère à partir des étalons quantiques de résistance et de tension, soit d’établir une traçabilité au produit KJR, où l’étalon quantique de courant est la mise en pratique de la nouvelle définition de l’ampère fondée sur la charge élémentaire.

Le principe a été décrit en détail par Poirier et coll. en 2014 dans Journal of Applied Physics.

En pratique, la réalisation de cet étalon quantique de l’ampère s’appuie sur le développement d’un générateur quantique de courant programmable (PQCG) et d’un ampèremètre quantique programmable (PQA) à partir d’un étalon quantique de courant programmable (PQCS), fondé sur l’application de la loi d’Ohm aux étalons quantiques de résistance et de tension en mettant en œuvre la technique de multiple connexion de l’EHQ et le comparateur de courants cryogénique.

L’incertitude visée, sur la réalisation et la mesure de courant dans la gamme allant de 1 μA à 10 mA, est inférieure à 1×10-8 en valeur relative. Associés au développement d’étalons de courant secondaires exploitables pour les étalonnages, le PQCG et le PQA constitueront les éléments primaires d’une nouvelle traçabilité de l’ampère qui, s’appuyant sur des étalons de résistance en graphène et de tension Josephson refroidis par des réfrigérateurs sans hélium, pourra être économe et pratique.

Le principe de l’étalon quantique de courant programmable (PQCS : Programmable Quantum Current Standard) est donc de réaliser un courant s’exprimant comme : I = nfJ / (RKJ), où est un entier représentant le numéro du plateau de Hall, nJ le nombre de jonctions Josephson et fJ est la fréquence Josephson, étalon qui conserve la précision quantique des étalons de tension et de résistance.

Il s’agit donc de mettre au point un circuit électrique original permettant d’appliquer, sans erreur, la loi d’Ohm aux étalons quantiques de résistance et de tension qui reposent sur l’effet Hall quantique et l’effet Josephson. Les travaux sont menés également dans le cadre du projet collaboratif européen Euramet/EMPIR e-SI-Amp.

Dès 2016, les premiers essais de faisabilité du principe ont permis de générer des courants dont les intensités, de quelques microampères (µA) à un milliampère (mA), sont reliées à la charge élémentaire avec une incertitude relative de dix parties par milliard (soit 10-8). Les résultats ont été publiés en décembre 2016 par J. Brun-Picard et coll. dans la revue PRX de l’American Physical Society.

Image
Schéma réalisation ampère quantique
Fig.1 - Représentation schématique du principe de la première réalisation d’un étalon quantique de courant directement relié à la constante de Josephson et la constante de von Klitzing.

Le PQCG a été mis au point et son fonctionnement a été démontré. Sa précision a été vérifiée en opposant la chute de tension due au courant du PQCG à travers une résistance calibrée à la tension d'un autre PJVS utilisé comme référence. L'incertitude cible de 10-8 a été atteinte. Le PQCG a en effet permis l'étalonnage d'un ampèremètre du commerce sur les calibres de 10 mA à 1 µA avec des incertitudes inférieures à 3×10-7. Les résultats ont été publiés par J. Brun-Picard et coll. dans la revue PRX.

La nouvelle version du PQCG est en cours de conception et la fabrication d'instruments spécifiques a débuté. Un nouveau comparateur de courant cryogénique (CCC) destiné à la mise en œuvre de la triple connexion à l'étalon quantique de résistance est également en cours de réalisation.

De plus, dans le cadre du JRP e-SI-Amp, une comparaison avec un amplificateur de très faible courant (ULCA) fabriqué par la PTB a été effectuée pour un courant de 50 µA. Les résultats indiquent un accord à 3×10-7 (article de synthèse en préparation).

Impacts scientifiques et industriels

  • Réalisation de la définition de l’ampère de 2018, unité de base du SI, où les valeurs des constantes RK et KJ sont fixées respectivement à h/e2 et 2e/h, sous la forme d’un étalon quantique de courant programmable ;
  • Réalisation d’un étalon quantique de courant avec une incertitude de 1×10-8 ;
  • Utilisation d’un étalon de courant reproductible dans n’importe quel laboratoire, comparable avec des incertitudes grandement réduites ;
  • Ouverture vers de nouvelles applications de l’étalon de courant, comme la réalisation de ponts de comparaison d’étalons quantiques de résistance aussi précis et exact que le pont de Wheatstone EHQ ;
  • Exploitation du principe ou de l’étalon pour réaliser le triangle métrologique, en étalonnant les pompes à électrons des laboratoires nationaux ;
  • Amélioration de la dissémination des références électriques, avec un étalon de courant pratique, transportable et peu coûteux et réalisation d’un trio d’étalons quantiques pratiques (résistance, tension et courant).

Partenaires/Collaborations

  • NPL, National Physical Laboratory, United Kingdom
  • PTB, Physikalisch-Technische Bundesanstalt, Germany
  • TUBITAK, Turkiye Bilimsel ve Teknolojik Arastirma Kurumu, Turkey
  • VTT, Teknologian tutkimuskeskus, Finland
  • Aalto, Aalto-korkeakoulusäätiö, Finland
  • CEA, Commissariat à l'énergie atomique et aux énergies alternatives, France
  • UCAM, University of Cambridge, United Kingdom
  • UoS, University of Southampton, United Kingdom
  • KRISS, Korea Research Institute of Standards and Science, Republic of Korea

Publications et communications

Djordjevic S., Poirier W., Drung D., and Götz M., “Comparison of the programmable quantum current generator and an Ultrastable Low-Noise Current Amplifier”, CPEM 2020, 24-28 Aug. 2020, Denver, Colorado, USA, DOI: 10.1109/CPEM49742.2020.9191863.

DJORDJEVIC S., POIRIER W., SCHOPFER F. et THÉVENOT O., « Les étalons électriques quantiques », Les reflets de la physique, SFP, 2019, 62, 25-28, DOI: 10.1051/refdp/201962011.

POIRIER W., DJORDJEVIC S., SCHOPFER F. and THÉVENOT O., “The ampere and the electrical units in the quantum era”, Comptes Rendus de l’Académie des sciences - Physique, 2019, 20, 1-2, 92-128, DOI: 10.1016/j.crhy.2019.02.003.

AZIB J., BRUN-PICARD J., SCHOPFER F., POIRIER W. and DJORDJEVIC S., “Towards an improved programmable quantum current generator”, Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris, France, 8-13 juillet 2018, DOI: 10.1109/CPEM.2018.8501115.

BRUN-PICARD J., « Une nouvelle génération d'étalons quantiques fondée sur l'effet Hall quantique », Thèse de doctorat de sciences, Université Paris-Saclay, Orsay, Spécialité : Physique, soutenue le 7 décembre 2018, https://tel.archives-ouvertes.fr/tel-01973021v1.

BRUN-PICARD J., DAGHER R., MAILLY D., NACHAWATY A., JOUAULT B., MICHON A., POIRIER W. and SCHOPFER F., “Quantum Hall resistance standard in Graphene grown by CVD on SiC: State-of-the-Art of the Experimental Mastery”, CPEM 2018, Paris, France, 8-13 juillet 2018, DOI: 10.1109/CPEM.2018.8501087.

JECKELMANN B.and PIQUEMAL F., “The elementary charge for the definition and realization of the ampere”, Annalen der Physik, 2018, 531, 5, 1800389, DOI: 10.1002/andp.201800389.

POIRIER W., LEPRAT D., SCHOPFER F., “Towards 10-10 accurate resistance bridge at LNE”, CPEM 2018, Paris, France, 8-13 juillet 2018, DOI: 10.1109/CPEM.2018.8501068.

BRUN-PICARD J., DJORDJEVIC S., LEPRAT D., SCHOPFER F. and POIRIER W., “Practical quantum realization of the Ampere from the elementary charge”, Physical Review X, 2016, 6, 041051, DOI: 10.1103/PhysRevX.6.041051.

BRUN-PICARD J., LEPRAT D., SCHOPFER F., DJORDJEVIC S.and POIRIER W., “Towards a programmable quantum current generator”, CPEM 2016, Ottawa, Canada, 10-15 July 2016, DOI: 10.1109/CPEM.2016.7540625.

DRUNG D., KRAUSE C., GIBLIN S.P., DJORDJEVIC S., PIQUEMAL F., SÉRON O., RENGNEZ F., GÖTZ M., PESEL E. et SCHERER H., “Validation of the ultrastable low-noise current amplifier as travelling standard for small direct currents”, Metrologia, 2015, 52, 756-763, DOI: 10.1088/0026-1394/52/6/756.

POIRIER W., LAFONT F., DJORDJEVIC S., SCHOPFER F. et DEVOILLE L., “A programmable quantum current standard from the Josephson and the quantum Hall effects”, Journal of Applied Physics, 115, 2014, 044509, DOI: 10.1063/1.4863341.

SCHERER H., GIBLIN S.P., JEHL X., MANNINEN A., PIQUEMAL F. et RITCHIE D.A., “Introducing Joint Research Project « Quantum Ampere » for the realisation of the new SI ampere”, EPJ Web of Conferences, EDP Sciences, 2014, 77, 0004, DOI: 10.1051/epjconf/2014770004.

Projets connexes

Le développement des sources d'énergie renouvelables est encouragé par la directive européenne 2009/28/CE. Les gaz renouvelables tels que le biogaz, le biométhane, l'hydrogène ou le gaz de synthèse peuvent être utilisés à cette fin, mais leurs caractéristiques sont légèrement différentes de celles du gaz naturel. L'industrie doit donc étudier l'impact de ces gaz sur les débitmètres disponibles et démontrer leur conformité avec la directive sur les instruments de mesure 2014/32/UE. L'objectif de ce projet européen est de fournir des données fiables à la communauté de la métrologie et de fournir des recommandations sur la mesure des gaz renouvelables avec des normes adaptées pour les compteurs à gaz.

Objectifs

Évaluer les utilisations typiques des gaz renouvelables et les effets sur l'exactitude du comptage, les coûts et la durée de vie des installations. Définir les essais manquants qui doivent être effectués lors de l'étalonnage pour couvrir l'utilisation de gaz renouvelables avec les compteurs à gaz existants.

Développer des méthodes traçables pour les essais de type et la vérification des débitmètres utilisés pour mesurer les flux de gaz renouvelables conformément aux exigences de la directive 2014/32/CE sur les instruments de mesure.

Valider les méthodes d'étalonnage et les bilans d'incertitude élaborés pour deux étalons de débit par une comparaison interlaboratoires appropriée et réaliser des procédures d'essai de type pour les compteurs de gaz domestiques et commerciaux à hydrogène.

Contribuer aux travaux de révision des normes au sein des comités techniques ad-hoc.

Résumé et premiers résultats

Les travaux s’appuient sur une étude bibliographique qui vise à rassembler les connaissances disponibles sur les performances des compteurs de gaz existants et à démontrer s'ils peuvent être utilisés avec des gaz renouvelables. L'étude s'est concentrée sur l’exactitude et la durabilité, pour les équipements disponibles et différents types de gaz (biogaz, biométhane, hydrogène, gaz de synthèse et mélanges avec le gaz naturel). Un questionnaire a été envoyé à un grand nombre d'acteurs en Europe afin d'identifier leurs expériences et leurs résultats en matière de mesure du débit des gaz renouvelables. La première conclusion a été la confirmation que très peu de données scientifiques sont disponibles sur le comptage des flux de gaz renouvelables, ce qui confirme l'objectif de ce projet.

Concernant le développement de méthodes de traçabilité pour les essais de type et la vérification des débitmètres pour mesurer le gaz renouvelable, un groupe d'experts a été créé pour étudier l'impact théorique des gaz renouvelables sur les étalons qui sont utilisés pour démontrer la conformité des compteurs de gaz à la directive européenne sur les instruments de mesure.

Ce projet vise également à organiser des tests de durabilité. Trois grandes étapes ont été définies dans un protocole d'essai spécifique : la fourniture de compteurs de gaz domestiques par des fournisseurs leaders sur le marché a été assurée et l'effet sur les performances des compteurs de l'exposition au biogaz et à l'hydrogène sera déterminé en comparant les étalonnages dans l'air effectués par un institut national de métrologie européen avant et après l'exposition à chaque gaz. Une usine de biogaz est en cours d'adaptation pour l'installation à long terme de ces compteurs de gaz. En outre, une étude a été entreprise sur l'étanchéité des compteurs à gaz afin de s'assurer qu'ils peuvent également être utilisés avec de l'hydrogène. En plus de tester les compteurs à gaz, les partenaires ont convenu, au cours des premiers mois du projet, des activités nécessaires pour étudier l'effet de l'exposition statique à l'hydrogène sur la durabilité et l’exactitude des dispositifs électroniques de conversion de volume.

Site internet du projet :

Impacts scientifiques et industriels

  • Amélioration de l’exactitude et de l'incertitude lors de la mesure et de l'étalonnage des compteurs de gaz utilisés pour mesurer les gaz renouvelables, ce qui profitera à l'industrie et aux utilisateurs finaux
  • Contribution à la révision des normes pour l'évaluation et l'approbation initiale des compteurs à gaz conçus pour mesurer les gaz renouvelables

Partenaires

  • LNE (FR)
  • CESAME (FR)
  • CMI (CZ)
  • FORCE (DE)
  • NEL (UK)
  • PTB (DE)
  • VSL (NL)

Dans le domaine des mesures électriques, les mesures d'impédance jouent un rôle très important puisqu'elles sont largement utilisées dans différents domaines de la science et de l’ingénierie. Le rôle principal de la métrologie des impédances est la réalisation des unités d'impédance : l'ohm (Ω), le farad (F), le henry (H) et leurs échelles associées. Ces trois unités sont reliées les unes aux autres par l’intermédiaire de la seconde (s) : 1 Ω = 1 H/s = 1 s/F. Par conséquent, une unité peut être utilisée pour réaliser les deux autres en utilisant différents ponts de comparaison fonctionnant en courant alternatif. Les chaînes de traçabilité des mesures d’impédance, reliant l’étalon calculable de capacité ou l’étalon quantique de résistance, mettent en jeu une succession de comparaisons d’impédance réalisées actuellement au LNE à l’aide de ponts analogiques. Ce projet vise à simplifier ces longues chaînes de comparaison, à améliorer les incertitudes de mesure et à élargir les possibilités de mesure d’impédance en mettant en œuvre des ponts numériques de comparaison.

Objectifs

Développer des ponts d'impédance numériques pour réaliser et automatiser les mesures d'impédance sur l'ensemble du plan complexe, dans la gamme de fréquences comprise entre 60 Hz et 20 kHz et avec des incertitudes jamais atteintes pour ces mesures.

Dresser un état de l’art des ponts Josephson et tester la faisabilité d’un type d’architecture de pont numérique intégrant des dispositifs Josephson pour générer des rapports de tension.

Développer des étalons de capacité ultra stables à diélectrique en silice fondue de 1 pF à 1 000 pF.

Résumé et résultats

Les méthodes employées aujourd’hui au LNE pour assurer la traçabilité des mesures d’impédance au SI mettent en œuvre des ponts de comparaison à transformateurs. Ces systèmes sont complexes et ne permettent d’obtenir les meilleures incertitudes que pour un nombre restreint de valeurs et de natures d’impédance. Le développement de ponts numériques pour réaliser des échelles d'impédance utilisant comme point de départ l’impédance d’une résistance déterminée à partir d’une résistance étalonnée à partir de l’effet Hall quantique ou d’un condensateur dont la capacité aura été déterminée au moyen d’un condensateur calculable améliorera la chaîne de traçabilité, en termes d’accessibilité, de ressources et permettra d’élargir la gamme des impédances mesurées.

Ce projet vise à développer des ponts de comparaison en deux et quatre paires de bornes en collaboration avec le CMI (laboratoire national de métrologie de la République Tchèque), permettant de réaliser une chaine de traçabilité au SI des mesures d’impédance sur une bande de fréquence allant de quelques dizaines de Hz à quelques dizaines de kHz, pour tout type d’impédance. Ces nouveaux systèmes permettraient d’assurer la traçabilité des impédances au SI avec des incertitudes comparables voire meilleures dans certaines conditions que celles atteignables aujourd’hui avec les ponts à transformateur. Ces ponts numériques contenant la plupart des briques élémentaires d'un pont d'impédance quantique conçu sur la base de l’étalon de tension de Josephson, le projet permettra aussi de concevoir une architecture de pont quantique.

Par ailleurs, fort de l’expérience acquise dans la fabrication de condensateurs de très faibles valeurs de capacité, développés dans le cadre du projet européen Euramet/EMRP AimQuTE, de nouveaux étalons ultra stables à diélectrique en silice fondue de capacité de 10 pF à 1 nF vont être développés au cours de ce projet RNMF, en collaboration avec le BIPM, pour améliorer la chaîne de mesure permettant de relier le farad à l’ohm.

Impacts scientifiques et industriels

  • Existence d’une chaîne de traçabilité au SI de la mesure d’impédance à partir de l’effet Hall quantique sur une bande de fréquence allant de quelques dizaines de hertz à quelques dizaines de kilohertz ;
  • Réponse aux attentes des utilisateurs en matière de traçabilité des inductances, pour des valeurs de 1 µH à 1 mH de 40 Hz à 20 kHz (mesures limitées à 1 kHz actuellement) et ceci au meilleur niveau métrologique ;
  • Possibilité d’effectuer des étalonnages au LNE d’impédances électriques sur tout le plan complexe ;
  • Mise à disposition de condensateurs étalons ultra stables pour répondre aux besoins exprimés par de nombreux laboratoires nationaux de métrologie ;
  • Participation à plus long terme à la réalisation du multimètre quantique en disposant d’un pont quantique d’impédance conduisant au développement d’un étalon quantique d’impédance en synergie avec d’autres projets menés en métrologique électrique quantique comme le projet visant à exploiter les propriétés du graphène pour réaliser des étalons quantiques (cf projet du RNMF « Effet Hall quantique dans le graphène pour la métrologie »).

Publications et communications

Ralph SINDJUI, « Réalisation et caractérisation de dispositifs de mesure associés à la détermination de la constante de von Klitzing à partir d’un condensateur calculable étalon dit de Thompson-Lampard », Thèse de doctorat de sciences de l’Université Paris-Saclay, Versailles, Génie électrique et métrologie, soutenue le 1er juillet 2016, TEL-01480637v1.

G. Trapon, O. Thévenot, J.-C. Lacueille et W. Poirier, “Determination of the von Klitzing constant RK in terms of the BNM calculable capacitor - Fifteen years of investigations”, Metrologia, 2003, 40, 4, 159–171, DOI: 10.1088/0026-1394/40/4/304.

F. Delahaye, A. Fau, D. Dominguez et M. Bellon, “Absolute determination of the Farad and the Ohm, and measurement of the quantized Hall resistance RH(2) at LCIE”, IEEE Trans. Instrum. Meas., 1987, vol. IM–36, 2, 205–207.

Partenaires

  • CMI, Institut national de métrologie de la République Tchèque)
  • Partenaires du projet européen JRP GIQS (Graphene Impedance Quantum Standard, 2019-2022).
  • BIPM

Projets connexes

  • EURAMET/EMPIR GIQS, Graphene Impedance Quantum Standards (JRP GIQS)
  • Projet RNMF « Étalon calculable de Thompson-Lampard »

Ce projet porte sur les mesures de puissance moyenne de signaux électriques de haute fréquence (RF et micro-onde). Il vise à consolider et étendre la traçabilité des mesures de puissance jusqu’à la bande de fréquences terahertz (170 GHz dans ce projet). Compte tenu de la raréfaction des sondes de puissance bolométriques et de la difficulté d’approvisionner des sondes thermoélectriques compatibles avec la référence primaire française (microcalorimètre), le LNE souhaite développer des sondes de puissance HF, de technologie thermoélectrique, pour les intégrer dans de nouveaux bancs de référence primaire (microcalorimètre) et secondaire (bancs d’étalonnage en puissance HF) qui sont développés également dans le cadre de ce projet.

Objectifs

Concevoir et mettre en œuvre de nouvelles sondes thermoélectriques de puissance adaptées aux connecteurs 1,85 mm [DC – 67 GHz] et aux guides d’onde rectangulaires [50 GHz – 170 GHz] ;

Concevoir et mettre en œuvre de nouveaux étalons primaires (microcalorimètres) ;

Concevoir et mettre en œuvre de nouveaux bancs de transfert de puissance HF (coaxial et guide d’onde rectangulaire) pour l’étalonnage sur la bande de fréquences du DC à 170 GHz ;

Améliorer les incertitudes de mesure de puissance HF et étendre les capacités de mesure sur un très large domaine de fréquence allant jusqu’à la bande térahertz.

Résumé et résultats

De nombreuses applications utilisent aujourd’hui des ondes électromagnétiques dans le domaine millimétrique du spectre (typiquement jusqu’à 100 GHz) et, de plus en plus, dans la bande térahertz des fréquences (typiquement de 100 GHz à 30 THz), par exemple le nouveau format de communication 5G en cours de déploiement, les portiques de sécurité mis en œuvre dans les gares ou les aéroports, les véhicules autonomes en phase de test ou les mesures de radiométrie spatiale.

Le niveau de puissance du signal de sortie d’un système ou d’un composant radiofréquence (RF) est un paramètre critique pour la phase de conception des équipements de communication et constitue un critère important pour la performance de ces équipements RF.

Pour mesurer cette puissance RF ou microonde, différents instruments sont employés : un analyseur vectoriel ou un wattmètre et sa sonde. Le wattmètre associé à sa sonde de puissance est l’instrument le plus exact utilisé dans l’industrie. Les sondes de puissance utilisées jusqu’à présent par les industriels ou organismes de recherche sont des sondes à diode, à thermocouple ou à thermistance qui transforment l’énergie RF en une tension DC mesurable avec les meilleures incertitudes.

Les laboratoires nationaux de métrologie étalonnent ces wattmètres et ces sondes qui permettent de mesurer la puissance moyenne du signal RF ; cette puissance mesurée inclut la puissance de la porteuse et des harmoniques. Actuellement les aptitudes de mesure et d’étalonnage ne s’étendent pas au-delà de 110 GHz en Europe, c’est-à-dire au tout début de la bande térahertz des fréquences. Cela est devenu insuffisant pour répondre aux besoins correspondant aux nouveaux usages des signaux HF en pleine expansion.

Image
Microcalorimètre, étalon de puissance HF
Fig.1 - Schéma d’un microcalorimètre, étalon primaire pour la mesure de puissance HF (la cuve d’eau n’est pas représentée).

Pour la mesure primaire de la puissance, le LNE a développé un microcalorimètre. C’est une enceinte thermique, isolée de l’extérieur, qui permet de mesurer des variations de température de l’ordre du millième de kelvin. Il est constitué, d’une cuve d’eau (tampon thermique, température stable et homogène), d’une ogive (protection des sondes de l’eau), thermocouples ou thermopile (pour mesurer l’échauffement entre la monture à étalonner et la tare), guide à parois minces (isolation thermique entre la sonde et les guides de liaison), guides de liaison (pour l’injection du signal HF).

Ce projet de recherche en métrologie vise donc à consolider et étendre la traçabilité des mesures de puissance moyenne jusqu’à des fréquences térahertz (170 GHz). Et, compte tenu de la raréfaction des sondes de puissance bolométriques et de la difficulté d’approvisionner des sondes de puissance thermoélectriques compatibles avec la référence primaire française (microcalorimètre), ce projet implique la réalisation de nouvelles sondes de puissance HF fondée sur la technologie thermoélectrique pour les intégrer dans de nouveaux bancs de référence primaire (microcalorimètre) et secondaire (bancs de transfert de puissance HF).

Impacts scientifiques et industriels

  • Réponses aux demandes croissantes d’étalonnage en puissance HF large bande en connecteur coaxial et globalement d’étalonnages dans la bande térahertz des fréquences ;
  • Réduction de la durée d’étalonnage des montures coaxiales large bande [DC - 67 GHz] ;
  • Extension des possibilités d’étalonnage en puissance HF en connectique coaxiale à 67 GHz (actuellement limitées à 50 GHz), en France et en Europe ;

  • Existence de nouveaux étalons primaires de puissances HF (microcalorimètres) et extension des possibilités d’étalonnage en guide d’onde à 170 GHz (actuellement 110 GHz), en France et en Europe ;

  • Amélioration des incertitudes d’étalonnage au plus haut niveau métrologique des montures en guide d’onde au-delà de 75 GHz ;

  • Simplification de la chaîne d’étalonnages avec une réduction du nombre annuel d’étalonnages nécessaires pour les montures coaxiales et du temps de mesure par fréquence avec le microcalorimètre, conduisant à une forte réduction du temps global d’étalonnage au plus haut niveau métrologique ;

  • De répondre à des demandes clients d’étalonnage en puissance dans le domaine térahertz.

Publications et communications

AHMAD S., CHARLES M., ALLAL D., NEGI P.S. and OJHA V.N., “Realization of 2.4mm coaxial microcalorimeter system as national standard of microwave power from 1 MHz to 50 GHz”, Measurement, 2018, 116, 106-113, DOI: 10.1016/j.measurement.2017.10.063.

ALLAL D., BELIÈRES D., LITWIN A. et CHARLES M., « Développement d’un microcalorimètre sur ligne coaxiale de 2,4 mm et des sondes de puissance associées », Revue française de métrologie, 2014, 33, 3-8, DOI: 10.1051/rfm/2014001.

CHARLES M., LITWIN L., POLETAEFF A. et ALLAL D., « Étalon de puissance radiofréquence pour les basses fréquences de 100 kHz à 1 GHz », Revue française de métrologie, 2012, 29, 25–30, DOI: 10.1051/rfm/2012001.

KAZEMIPOUR A. ZIADÉ F., ALLAL D., JENU M.Z.M. et BERGEAULT E., “Non-linear modeling of RF thermistor: application to bolometer mount calibration”, IEEE Trans. on Instrumentation and measurement, 2011, 60, 7, 2445-2448, DOI:10.1016/j.measurement.2017.10.063.

ZIADE F., BERGEAULT E., HUYART B. et KAZEMIPOUR A., “Realization of a calculable RF power standard in coplanar technology on Alumina substrate”, IEEE Trans. On Microwave Theory and Techniques, 2010, 58, 6, 1592-1598, DOI: 10.1109/TMTT.2010.2048256.

ZIADÉ F., BOURGHES M., KAZEMIPOUR A., BERGEAULT E. et ALLAL D., « Étalon calculable de puissance radiofréquence », Revue française de métrologie, 2009, 20, 3-8, RFM-20-Ziade.

Partenaires/Collaborations

  • PTB, Institut national de métrologie d’Allemagne
  • METAS, Institut national de métrologie de Suisse
  • Laboratoire GeePs de l’Ecole CentraleSupélec, Gif-sur-Yvette, France
  • Institut d'Électronique de Microélectronique et de Nanotechnologie (IEMN) de Lille

La biomasse est utilisée pour produire de l'électricité, de la chaleur ou des biocarburants pour le transport. Celle-ci peut bénéficier d'incitations soutenant les objectifs de l'UE en matière d'énergie renouvelable. Ces incitations sont calculées en fonction des valeurs calorifiques déclarées telles que spécifiées pour chaque type de biocarburant dans la directive 2009/28/CE du Parlement européen et du Conseil relative à la promotion de l’utilisation de l’énergie produite à partir de sources renouvelables. Cependant, ces valeurs sont basées sur des méthodes de mesure non traçables, de sorte que, à mesure que la consommation augmente, les inexactitudes intrinsèques peuvent représenter des montants financiers très élevés. De plus, le commerce est également pénalisé par des méthodes de mesure lentes de la teneur en énergie, qui sont également sujettes aux erreurs d'échantillonnage. Le projet vise à mettre en œuvre des méthodes métrologiques en ligne plus rapides et plus précises de la valeur calorifique des biocarburants solides et liquides. De nouvelles méthodes doivent être conçues pour déterminer la teneur en impuretés et en cendres, et des étalons de transfert pour mesurer l'humidité sont nécessaires.

Objectifs

Développer la mesure en ligne, traçables au SI, de la teneur en eau dans des biocarburants solides (pellets, plaquettes de bois) avec une incertitude inférieure à 5 %

Développer des méthodes améliorées d'échantillonnage des biocarburants (lorsque les méthodes en ligne ne peuvent pas être utilisées)

Développer des mesures de capacité calorifique, traçable au SI, utilisant des techniques de mesure en ligne du taux de cendre des biocarburants solides

Développer et valider des mesures d'impuretés, en ligne, des biocarburants liquides de sorte à en déduire la capacité calorifique

Disséminer les développements métrologiques obtenus dans le cadre de ce projet auprès des fournisseurs de matériels de mesure, des organismes de normalisation et des principaux acteurs de ce milieu

Résumé et premiers résultats

Les travaux menés par la métrologie française, en collaboration avec l’Institut Fresnel de l’Université d'Aix-Marseille, dans ce projet européen portent essentiellement sur les mesures de teneur en eau. Il est tout d’abord nécessaire de faire un examen du cadre métrologique. Cela passe par l’organisation d’une enquête auprès des utilisateurs finaux sur le besoin d'incertitude et les exigences pour l'étalonnage des équipements en ligne notamment pour les mesures d'humidité. Cette enquête doit permettre de définir les paramètres requis et les méthodologies métrologiques pour mesurer le pouvoir calorifique, la qualification et la quantification des mesures d'impuretés, de cendres et d'humidité. Sur la base des exigences métrologiques définies la ou les méthodes sur lesquelles la traçabilité doit être basée sera sélectionnée en exploitant les travaux du précédent projet européen Metefnet, ce qui orientera les travaux pour le développement des étalons de référence et de transfert de la métrologie française.

Impacts scientifiques et industriels

  • Un contrôle qualité amélioré des biocarburants liquides et solides, avec des mesures comparables
  • Un fonctionnement amélioré, une utilisation plus efficace du carburant, une consommation réduite et des émissions minimisées

Partenaires

  • CMI (CZ)
  • DTI (DK)
  • IMBiH (BA)
  • INM-RO (RO)
  • LNE-CETIAT (FR)
  • PTB (DE)
  • UME (TK)

Site internet du projet

Ce projet européen propose de développer les outils métrologiques nécessaires pour caractériser les nouvelles technologies photovoltaïques (PV) émergentes.

En particulier, les technologies basées sur de nouveaux matériaux (e.g. Perovskite Tandem on Silicon) apparaissent comme la nouvelle génération de modules PV présentant de meilleurs rendements de conversion par rapport aux technologies actuelles. Par ailleurs, de nouveaux modules PV dédiés à une utilisation à l’intérieur des bâtiments sont en train d’émerger. Aujourd’hui, on note l’absence de moyens de caractérisation de ces nouvelles technologies.

Objectifs

Réduction des incertitudes relatives aux cellules de références qui affectent le bilan d’incertitudes de toute la chaîne de traçabilité qui en découle.

Les normes internationales concernant la caractérisation de ces technologies PV émergentes seront développées.

Résumé et premiers résultats

La description du projet est disponible sur le site du programme EMPIR en suivant ce lien.

Partenaires

Ce projet est financé par le programme EMPIR et regroupe, entre autres, 5 instituts de métrologie (Finlande, Bosnie Herzégovine, France, Allemagne, Turquie).

L’étude de la variation de la réponse d’instrument de détection de neutrons en fonction de l’énergie est expérimentalement déterminée dans des champs neutroniques mono-énergétiques. Ces champs sont produits avec un faisceau de particules accélérées envoyées sur une cible neutrogène. La caractérisation de ces champs nécessite l’utilisation de détecteurs permettant de mesurer l’énergie des neutrons et leur fluence au point d’étalonnage. Les champs de neutrons mono-énergétiques générés au laboratoire LMDN de l'IRSN par l'accélérateur de particules AMANDE ont une énergie comprise entre 2 keV et 20 MeV avec un faisceau continu ou pulsé. Cette dernière caractéristique permet de mettre en œuvre la méthode du temps de vol comme étalon primaire pour déterminer l'énergie des champs de neutrons mono-énergétiques qui y sont générés. Cette méthode permet également de déterminer la distribution en énergie de la fluence neutronique dans ces champs.

Objectifs

Finalisation de la mise en place de la méthode du temps de vol pour les champs neutroniques supérieurs à 1 MeV avec le détecteur le mieux adapté (scintillateur liquide BC501A ou « Stilbène »)

Mise en place de la technique du temps de vol en-deçà du 1 MeV, avec détermination du détecteur le mieux adapté, définition de son système d'acquisition, caractérisation de sa réponse en fonction de l'énergie et du seuil de discrimination et étude expérimentale de ses performances en temps de vol

Mise en œuvre finale du ou des détecteurs couplés avec son/ses système(s) d’acquisition les plus adaptés (électronique analogique ou numérique) pour l’établissement  des références en énergie et de la distribution en énergie de la fluence d’AMANDE

Résumé et premiers résultats

L’installation AMANDE du LNE-IRSN produit des champs de neutrons mono-énergétiques entre 2 keV et 20 MeV. La méthode de temps de vol a été choisie pour déterminer l’énergie de ces champs neutroniques de manière directe et absolue. Cette méthode consiste à mesurer le temps mis par les neutrons pour parcourir la distance entre la cible (leur lieu de création) et le détecteur et ne dépend ainsi essentiellement que de deux grandeurs :

  • Le temps écoulé entre la création des neutrons produits dans la cible et leur détection dans le détecteur ;
  • La distance entre la cible et ce détecteur.

La première grandeur est déterminable en utilisant le faisceau pulsé d’AMANDE où tous les neutrons sont générés en même temps dans la cible. Les grandeurs de temps, de distance et de masse sont traçables sur les étalons nationaux, ce qui permet d'obtenir une mesure primaire de l'énergie. L’incertitude attendue sur cette mesure est de l'ordre du pourcent. Cette méthode est réalisable à ce jour pour des énergies supérieures à 1 MeV avec un scintillateur liquide BC501A. Quelques études sont encore à finaliser pour obtenir non seulement l’énergie moyenne mais également la distribution en énergie des neutrons. L’utilisation d'un autre type de scintillateur (Stilbène) en lieu et place du BC501A et/ou d’un second détecteur est cependant nécessaire pour étendre le domaine d’application de la méthode du temps de vol en-deçà de 1 MeV.

La méthode du temps de vol permettra ainsi de raccorder tout type de spectromètre neutron sur les références en énergie. Cette méthode sera incluse à terme dans le dossier d’accréditation par le COFRAC de l’installation AMANDE.

Le projet de recherche consiste donc à :

  • déterminer quel(s) détecteur(s) est le mieux adapté en fonction de ses performances de discrimination entre les neutrons et les photons, de sa plage de sensibilité, de sa réponse en énergie, de sa réponse en temps et de ses autres caractéristiques intrinsèques ;
  • définir si un ou plusieurs détecteurs sont nécessaires pour couvrir, avec la méthode du temps de vol, l’ensemble de la gamme en énergie d’AMANDE ;
  • définir le système d'acquisition et de traitement des données le plus adéquat, en mutualisant et en homogénéisant autant que possible avec les systèmes existant ;
  • caractériser la réponse de (ou des) instrument(s) retenu(s) en fonction de l'énergie et du seuil de discrimination, par un étalonnage en fluence traçable sur les références du LNE-IRSN ;
  • étudier expérimentalement les performances de la méthode du temps de vol, notamment en termes d'incertitude sur l'énergie du pic mono-énergétique, et comparer les valeurs obtenues aux valeurs théoriques obtenues par la cinématique des réactions nucléaires,
  • publier dans la revue Metrologia a minima sur l'étalon de référence en énergie, par la méthode du temps de vol, en dessous de 1 MeV.

 

Impacts scientifiques et industriels

Directement traçable sur les références nationales en temps, en longueur et en masse, la méthode du temps de vol pourra être considérée comme métrologiquement "primaire" pour l’énergie des neutrons avec une incertitude de l'ordre de 1 % sur l'énergie moyenne. Cette nouvelle référence primaire profitera à l’ensemble des industriels ayant besoin de réaliser des mesures d’énergies de neutrons (industrie nucléaire, radioprotection…).

Publications et communications

Cognet M-A and Gressier V., 2010, Development of a measurement reference standard for neutron energies between 1 MeV and 20 MeV using time of flight method at the AMANDE facility Metrologia 47 377–86.

Partenaires

Le CEA est un partenaire scientifique par le biais d’une thèse commune sur le scintillateur Stilbène.

Le LNE-IRSN réalise des étalonnages d’appareils de mesure selon les recommandations des normes ISO 8529. Les champs de neutrons thermiques, c’est-à-dire dont l’énergie des neutrons est inférieure à 0,025 eV, comptent parmi ceux recommandés pour l’étalonnage des appareils de radioprotection. Depuis Mars 2015, la norme 21909, spécifique aux systèmes de dosimétrie neutron passifs, est en application. Cette norme préconise de réaliser, entre autres, des irradiations en champ thermique pour caractériser les propriétés intrinsèques des systèmes dosimétriques. L’édition de cette norme devrait accroître la demande en matière d’étalonnage en champ thermique. C’est dans ce contexte que le LNE-IRSN a décidé de mettre en place un nouveau champ de référence de neutrons thermiques.

Objectifs

Définir, par simulations Monte-Carlo, les caractéristiques des champs thermiques pouvant être obtenu avec l’accélérateur T400 (produisant des neutrons de 3 MeV),  couplé à un modérateur et choisir la configuration la plus satisfaisante selon différents critères préalablement définis

Conception et fabrication du bloc modérateur, son support métallique et le banc d’étalonnage associé

Caractériser expérimentalement le champ neutronique produit en terme de fluence et de distribution en énergie de celle-ci

 

Participer à la nouvelle comparaison CCRI(III)-K8

Résumé et premiers résultats

Le LNE-IRSN réalise des étalonnages d’appareils de mesure selon les recommandations des normes ISO 8529. Les champs thermiques comptent parmi les points d’énergie recommandés pour les étalonnages des appareils de radioprotection. Le LNE-IRSN a décidé de mettre en place une nouvelle référence thermique, compte tenu de son expérience et de son savoir-faire en la matière acquise avec l’installation précédente, SIGMA, aujourd’hui à l’arrêt.

Ce nouveau champ thermique sera généré au moyen de l’accélérateur T400 de l’installation CEZANE de l’IRSN, couplé à un bloc de graphite, dont les dimensions seront à déterminer afin de satisfaire entre autres à des critères physiques, relatifs à la contribution maximale des neutrons thermiques aux débits de fluence et d’équivalent de dose ambiant, l’idéal étant d’atteindre un champ thermique pur en fluence et en équivalent de dose ambiant.

Ce projet couvre ainsi l’ensemble des actions relatives à la définition du modérateur jusqu’à la caractérisation expérimentale des champs neutroniques (T400 nu et champ thermique), une fois les éléments fabriqués et l’accélérateur T400 remis en service. Le projet sera réalisé sur trois ans, de 2018 à 2020, avec pour objectif une participation du LNE-IRSN, à partir de fin 2020, à l’exercice de comparaison internationale organisée par le Comité Consultatif des Rayonnements Ionisants sur les champs thermiques et pilotée par le LNE-IRSN dès 2019 (« Key-Comparisons CCRI(III)-K8-2019 »).

En 2018, les caractéristiques techniques du modérateur thermique ont été définies via une étude par simulations Monte-Carlo (matériaux, géométrie, dimensions). Suite à cette étude par simulations, une étude technique de réalisation a été lancée. En parallèle, l’accélérateur T400 a été remis en service. La fabrication du modérateur est prévue en 2019 ainsi que son intégration avec l’accélérateur T400. Le dispositif CARAT devrait être mis en service en 2020, après la caractérisation spectrométrique et dosimétrique du champ neutronique.

Impacts scientifiques et industriels

La mise en place d’un nouveau champ thermique s’inscrit dans le contexte des recommandations de la norme 21909. Le LNE-IRSN propose d’ores et déjà des prestations d’étalonnage avec des sources de neutrons isotopiques (252Cf et 241AmBe), ainsi qu’auprès d’AMANDE avec des champs neutroniques mono-énergétiques.

Grâce à la mise en place du dispositif thermique CARAT qui sera défini dans ce projet, le laboratoire sera en mesure d’étendre son offre de prestations et la compléter avec cette énergie d’étalonnage supplémentaire, ainsi que de participer aux mesures de la nouvelle comparaison CCRI(III).K-8.

Publications et communications

ISO 8529-1:2001 Reference neutron radiations — Part 1: Rayonnements neutroniques de référence -- Partie 1: Caractéristiques et méthodes de production

ISO 21909 Dosimètres individuels passifs pour les neutrons -- Exigences de fonctionnement et d'essai

V. Lacoste, Design of a new IRSN thermal field facility using Monte Carlo simulations, Rapport DRPH/SDE n°2007-14 (2007)

V. Lacoste, Design of a new IRSN thermal neutron field facility using Monte Carlo simulations, Radiation Protection Dosimetry, 126: 58-63 (2007)

R. Babut, Etude de conception par simulations Monte-Carlo d’un modérateur pour le T400, Rapport PSE-SANTE/SDOS/LMDN 2018-00064 (2018)

 

L’éclairage à base d'émetteurs à l'état solide (type LED) est considéré comme étant deux fois plus efficace que celui produit par des lampes à incandescence classiques. La généralisation de leur utilisation nécessite de mettre au point des méthodes et instrumentations métrologiques afin d'en caractériser les performances de manière univoque.... éléments non disponibles avant la réalisation de cette étude réalisée dans le cadre d'un programme européen commun de métrologie (JRP Lighting).

Objectifs

Proposer des méthodes de caractérisation des SSL 

Évaluer les métriques de la perception humaine des objets éclairés avec des LED 

Qualifier les éclairages utilisant des LED (diodes électroluminescentes)

Résumé et premiers résultats

Image
ENG-RO-01_Fig1
Vues de la salle utilisée pour les tests subjectifs des éclairages à leds.

L’éclairage à DEL (maintenant communément appelé « led ») a une technologie spécifique :  ses performances optiques et sa durée de vie dépendent de la température de jonction des DEL et l’évolution dans le temps se manifeste par un déclin très lent du flux émis ; les DEL ont des spectres de rayonnement spécifiques avec un pic bleu pour la technologie la plus commune ; le rayonnement est produit sur des surfaces de petites dimensions avec sous sans optique de concentration et qui donc peuvent être vu par l’œil humain avec comme des points sources d’intensité très élevée ; les DEL nécessitent des électroniques spécifiques pour pouvoir fonctionner avec des caractéristiques électriques mal prises en compte dans les méthodes actuelles de mesures.

Une nouvelle métrologie relevant des grandeurs optiques, électriques et psycho-visuelles est donc nécessaire pour pouvoir correctement mesurer et caractériser les éclairages à led. Ce projet, piloté par le VSL, a pour objectif de mettre en place les moyens de caractérisation et d’étalonnage des sources d’éclairage dites à état solide (SSL, solid state lighting), essentiellement à base de leds, du point de vue photométrique mais aussi de celui de la perception (rendu des couleurs, confort visuel et en vision mésopique).

Le travail a été réparti entre 17 partenaires et est organisé en 4 parties :

1   Mesures pour la traçabilité des caractéristiques de ces sources d’éclairage ;

2   Méthodes de mesure de base pour la caractérisation de ces sources ;

3   Évaluation de la perception humaine des SSL : rendu des couleurs, confort visuel, vision mésopique pour l’éclairage extérieur ;

4   Développement de paramètres pour qualifier les performances de ces sources.

Le LCM a coordonné la partie n° 3 et a été également impliqué dans les parties 2 et 4.

Partie 2 : Méthodes de base pour la caractérisation des SSL

Le LCM est intervenu pour la définition des méthodes d’accélération du vieillissement des leds. Deux expériences de vieillissement accéléré de 6 mois en chambre climatique à deux températures (45 °C et 60 °C). Puis le LCM a traité les données de mesure et les a comparées à celles obtenues par le MIKES (Finlande) après un vieillissement naturel. Deux rapports ont été fournis, l’un sur les méthodes et l’autre sur les résultats.

Une accélération du vieillissement en caisson climatique a été constatée pour l’ensemble des lampes testées avec des vitesses proches ou significativement différents suivants les lampes testées mais suffisamment uniforme pour retenir la méthode comme un outil pertinent de détermination de la durée de vie des SSL.

Partie 3 : Perception humaine des éclairages à base de SSL

Le LCM a été impliqué dans les tâches relatives aux métriques de rendu des couleurs et de confort visuel.

Rendu des couleurs

Un état de l’art complet a été réalisé couvrant toutes les propositions de métriques de rendu des couleurs pour remplacement de l’actuel indice. Un programme en C++ a été développé intégrant toutes les composantes de base des différentes métriques et permet l’exploitation paramétrique des métriques de rendu des couleurs. Pour estimer l’impact des différentes métriques sur les différentes technologies d’éclairage et la corrélation entre elles, un ensemble de 122 spectres de sources a été constitué et classé par technologies. Une analyse générale et comparative a été réalisée. La majorité des métriques pour les sources fluorescentes sont bien corrélées entre elles (coefficient de Pearson de 0,90) alors les éclairages à DEL présentent une corrélation inférieure (coefficient de Pearson de 0,57), montrant la spécificité des éclairages à DEL. Les grandeurs influentes dans les métriques ont été déterminées. Cette partie initiale a fait l’objet d’un rapport.

Puis le LCM a mené une expérience subjective importante. Une pièce d’expérimentation a été construite, meublée et décorée en salon. Douze jeux de sources peuvent être installés sur des chariots mobiles au-dessus du plafond de la pièce de manière à éclairer la pièce à travers un diffuseur translucide situé au centre du plafond. 43 observateurs ont participé à cette expérience subjective utilisant 9 sources : lampes incandescentes, fluorescentes, fluocompactes et 6 types de lampes à technologie DEL. Les critères d’évaluation ont porté sur 9 attributs qualitatifs : la préférence, la qualité de la vivacité des couleurs, la fidélité des couleurs, le naturel des couleurs en général. L’analyse portait sur des éléments spécifiques (fruits/légumes, plantes, peau) et sur le rendu d’un document de charte de couleurs. Une analyse statistique (ACP) a montré que l’expérience était robuste. Les corrélations des notes subjectives avec les prédictions de la métrique courante et 13 propositions de métriques ont été étudiées.

Une recommandation à la commission internationale de l’éclairage (CIE) pour les métriques de rendu des couleurs a été rédigée et présentée en 2012 au Congrès de la CIE à Hangzhou en Chine.

Confort Visuel

Quatre expériences subjectives ont été réalisées avec 50 participants : 17 scénarios réels d’éclairages ont été aménagés dans un salon (la pièce subjective développée), un bureau, une grande pièce arrangée en compartiments et un espace à fond uniforme (3 m × 3 m) avec des sources éblouissantes.

Tous les scénarios d’éclairage et d’éblouissement ont été caractérisés par des mesures photométriques. Des cartes de haute résolution de la luminance lumineuse couvrant le champ visuel ont été élaborées pour tous les scénarios. A partir de ces cartes de luminances et des caractéristiques colorimétriques, un modèle physique de prédiction du confort visuel ressenti a été élaboré. Les corrélations entre les notes subjectives moyennes de 50 observateurs et les prédictions du modèle sont excellentes : 94 % (salon), 91 % (compartiments), 97 % (bureau) et 98 % (éblouissement). Les travaux ont été présentés en 2013 au Congrès International de Métrologie (CIM) à Paris.

Partie 4 : métriques de qualité pour les SSL

Le premier rapport porte sur les métriques de qualité couleur et inclut une synthèse des recherches effectuées sur le rendu des couleurs et d’autres paramètres colorimétriques pour constituer une spécification complète des qualités colorimétriques des éclairages.

Le second rapport est un état des lieux pour la sécurité photobiologique avec quelques investigations en laboratoire sur les méthodes de mesures.

Travaux en cours :

Le travail se poursuit sur l’approfondissement et une mise à jour des métriques de qualité de rendu des couleurs.

 

Site du projet :

http://www.m4ssl.npl.co.uk/

Impacts scientifiques et industriels

L’impact du projet est essentiellement une contribution aux activités prénormatives concernant l’estimation de la durée de vie, de rendu des couleurs et du confort visuel.

Les organismes internationaux comme la Commission internationale de l’éclairage (CIE) établissent des nouveaux indices en se basant sur un réseau de laboratoires et d’experts qui prennent en compte les travaux publiés.

La diffusion de l’information et des résultats obtenus durant le projet européen est réalisée par l’édition un site internet dédié, l’organisation d’événements de type séminaire ouvert aux parties prenantes du projet (en fin de projet) et par la représentation dans les comités techniques des organisations européenne et internationale de métrologie, de l’éclairage et de la normalisation.

Publications et communications

RENOUX D., NONNE J. et SABOL D., “Contribution to the assessment and the improvement of colour rendering metrics of artificial light sources”, CIE 2012 – Lighting Quality and Energy Efficiency, Hangzhou, Chine, 19 septembre 2012.

ROSSI L, SIRAGUSA S., NONNE J. et RENOUX D., “Correlating eye movements with indoor visual comfort perception under artificial lighting”, 17th European Conference on Eyes Movements (ECEM), Lund, Sweden, 11-16 August 2013.

NONNE J., RENOUX D. et ROSSI L., « Metrologie pour les éclairages à état solide », 16e Congrès International de Métrologie, Paris, France, 7-10 octobre 2013, DOI: 10.1051/METROLOGY/201314004.

BAUMGARTNER H., RENOUX D., VASKURI A., PULLI T., POIKONEN T., KÄRHÄ P. et IKONEN E., “Lifetime projection of LED light sources”, Proceedings of the Finnish Physics Days, 2013, 10.18.

Partenaires

  • INRIM (Italie) : accueil d’un scientifique (févier-mars-avril 2012) pour travailler sur le rendu des couleurs.
  • SMU (Slovaquie) : accueil d’un scientifique (août-septembre-octobre 2012) pour travailler sur les métriques de confort visuel.
  • Mitsubishi Chemical : utilisation des DEL de cette société et échange sur les résultats.

Partenaires du JRP-ENG05 :

  • VSL (Netherlands),
  • Aalto (Finland),
  • CMI (Czech Republic),
  • CSIC (Spain),
  • EJPD (Switzerland),
  • INRIM (Italy),
  • IPQ (Portugal),
  • LNE (France),
  • MKEH (Hungary),
  • NPL (United Kingdom),
  • PTB (Germany),
  • SMU (Slovakia),
  • SP (Sweden),
  • Trescal (Denmark),
  • CCR (Italy),
  • TU-IL (Germany),
  • UPS (France).

Le réseau électrique connaît actuellement de profondes mutations à travers le monde. En effet les réseaux d’approvisionnement actuels, qui sont centralisés et incorporent une part importante de centrales à combustible fossile, doivent migrer vers une intégration accrue des sources d’énergies renouvelables (EnR). Le paysage énergétique évolue donc vers une production diversifiée et décentralisée. Les gestionnaires de réseau doivent donc être en mesure de connaître en temps réel le profil de production/consommation ainsi que la stabilité du réseau et la qualité de l’énergie électrique distribuée.

Objectifs

L’objectif général du projet européen est le développement d’une infrastructure métrologique, de manière à réussir la mise en œuvre d’un réseau électrique intelligent en Europe 

L’objectif du projet RNMF associé est la réalisation d’un PMU de référence qui puisse être utilisé pour des mesures sur sites et des tests en laboratoire.

Résumé et premiers résultats

Image
ENG-EM-02_Fig1

Le caractère intermittent des EnR et le fait de ne pas pouvoir stocker l’énergie électrique imposent de recourir à une structure de communication capable d’aider à maintenir l’équilibre du réseau électrique, c’est-à-dire par la mise en place d’un réseau dit intelligent et communicant : le « réseau électrique intelligent » ou « smart grid ».

Le réseau intelligent se situe donc à la convergence de deux mondes : celui des télécommunications et celui des réseaux électriques traditionnels, dont la surveillance et le contrôle sont assurés grâce à la gestion de flux importants de données. Ces données proviennent de dispositifs judicieusement positionnés sur le réseau : les synchrophaseurs ou PMU (Phasor Measurement Units). Un réseau intelligent peut donc être assimilé à la superposition d'un réseau électrique traditionnel et d’une structure de communication capable d'assurer la stabilité, la fiabilité et la qualité de la fourniture d'électricité, dans un contexte d'interconnexions de réseaux électriques à grande échelle.

Le projet européen s’adresse aussi bien aux concepteurs qu’aux opérateurs de réseaux intelligents pour faciliter la mesure et la gestion des nombreux paramètres relatifs au fonctionnement des réseaux. Il est piloté par le VSL et a pour objectif général de développer une infrastructure métrologique afin de réussir la mise en œuvre d’un réseau électrique intelligent en Europe. Les travaux métrologiques réalisés dans le cadre de ce projet doivent apporter les méthodes et les moyens de garantir la qualité et la comparabilité des mesures effectuées pour assurer la qualité, la stabilité et une intégration fiable de la génération distribuée de l’électricité. Le travail a été réparti entre 22 partenaires (dont quatre universitaires) et a été organisé en 4 lots de tâches :

  • Créer une infrastructure métrologique pour caractériser, évaluer et étalonner les synchrophaseurs (PMU) utilisés pour contrôler la stabilité du réseau électrique ;
  • Assurer et améliorer la traçabilité des mesures d’énergie électrique sur site ;
  • Développer des instruments portables de mesure sur site de la qualité de l’énergie sur le réseau ;
  • Développer des modèles de mesure de la qualité de l’énergie des réseaux de basse et moyenne tension pour en assurer la surveillance et améliorer leur fiabilité.

Le projet a débuté le 1er septembre 2010 et s’est déroulé sur une durée de trois ans. Le LNE s’est engagé dans le premier lot (relatif à l’étalonnage des PMU).

Les actions menées par le LNE ont donc pour objet de réaliser un PMU de référence (au sens métrologique) qui puisse être utilisé pour la caractérisation de matériels commerciaux. Dans cette perspective, il est essentiel que le PMU développé satisfasse dans un premier temps aux exigences de la norme IEEE C37.118-2005 relative aux conditions statiques d’exploitation des réseaux électriques. Le PMU de référence doit donc être caractérisé en accord avec cette norme. Dans un deuxième temps, le PMU de référence doit satisfaire aux exigences de la norme IEEE C37.118-2011, relative aux conditions d’exploitation dynamique des réseaux électriques intelligents. Au-delà des actions menées dans le contexte du JRP, le LNE a mené des actions complémentaires visant à acquérir les connaissances nécessaires et les moyens de disposer d’outils de référence pour ses propres besoins en tant que laboratoire national dans le domaine de la métrologie électrique.

Un PMU, outil utilisé pour la surveillance et le contrôle d'un réseau électrique, permet, à partir de mesures de signaux de tension et de courant sur le réseau, de déterminer leur amplitude (V et I), la fréquence (f) et la phase (φ), ainsi que les paramètres de contrôle de la stabilité du réseau comme la vitesse de variation de la fréquence (Rate of Change of Frequency, ROCOF). L’ensemble des paramètres mesurés et calculés (phaseur, fréquence, phase, ROCOF, TVE, FE et RFE) constituent une image du réseau à un instant donné. Le terme employé dans la norme IEEE C37.118 pour désigner une telle image est « frame ».

Après une analyse bibliographique des travaux portant sur des PMU et une prospection des différents fabricants, le LNE s’est porté acquéreur d’un PMU qu’il a installé sur son réseau électrique en avril 2011. Cette installation a permis au LNE d’évaluer ses performances sur un cas concret bien qu’une source triphasée sur laquelle on pourrait générer des signaux de formes arbitraires aurait été un bien meilleur outil de test en régime statique et dynamique. Cette première phase du travail a permis de définir les différentes fonctions et caractéristiques du PMU de référence à construire.

Les différents modules matériels du PMU ont été choisis de manière à satisfaire aux exigences en termes de mesure sur site, de transportabilité, de robustesse (résistance aux chocs) et d’immunité aux perturbations externes (fidélité des mesures en termes d’acquisition/génération de données, vitesse, déterminisme). Cet instrument a été construit (matériel de mesure et d’interfaçage avec le réseau et logiciel de traitement des données), mis en œuvre et complètement caractérisé.

Il permet de calculer la fréquence, l’amplitude et la phase du signal incident et le ROCOF (vitesse de variation de la fréquence). Il a été caractérisée en mode statique :

  • Test de variation de la fréquence de la forme d’onde incidente par pas de 1 Hz de 45 Hz à 55 Hz ;
  • Test de variation de l’amplitude de la forme d’onde incidente de 10 % à 120 % de l’amplitude nominale par pas de 10 % ;
  • Test de variation de la phase de la forme d’onde incidente de –180° à +180° par pas de 20° ;
  • Test de mesure de signaux déformés (distorsion harmonique des rangs 1 à 50) de manière à évaluer la robustesse des algorithmes en présence d’harmoniques.

Tous ces tests ont fait l’objet d’un rapport détaillé. Ils ont notamment montré qu’il existait encore des pistes d’amélioration du PMU de référence réalisé, notamment sur les composantes d’incertitude associées à la synchronisation temporelle et à la phase.

Puis, afin de disposer d’une forme d’onde théorique qui se rapproche de celle mesurée sur le réseau pour évaluer les performances du PMU, le LNE a développé une plateforme qui remplit cette fonction. Il s’agit de disposer de signaux répondant aux spécifications des tests en mode statique (norme 2005) et également de celles en mode dynamique (norme de 2011). La plateforme a été développée ainsi que la méthode d’analyse des signaux déformés (signaux constitués de la composante fondamentale et de plusieurs harmoniques fluctuantes).

Ce dernier point sera poursuivi dans le cadre du futur projet européen (SmartGrid 2) qui débutera mi-2014 dans lequel l’accent sera mis sur la caractérisation dynamique des PMU pour les évaluer dans conditions réelles de réseaux, en présence de signaux perturbés par des incidents se produisant de manière aléatoire.

 

Site du projet :

Metrology for smart electrical grids

Impacts scientifiques et industriels

  • Traçabilité des PMU pour la surveillance et la gestion des réseaux électriques largement interconnectés ;
  • Progrès dans le domaine des mesures de l’énergie électrique sur site ;
  •  Modélisation et simulation de fonctionnement des réseaux intelligents pour aider au développement de stratégies de gestion des différentes sources d’approvisionnement.

Publications et communications

NDILIMABAKA H., BLANC I., KURRAT S., BRAUN J.-P. et SIEGENTHALER S., Characterization of a reference PMU according to the IEEE C37.118-2005 Standard”, CPEM 2014.

NDILIMABAKA H. et BLANC I., “Design and testing of the reference Phasor Measurement Unit (PMU)”, Euramet/EMRP Metrology for Smart Grids Workshop, Noordwijk, Pays-Bas, 25-26 juin 2013.

NDILIMABAKA H. et BLANC I., “Development of a reference Phasor Measurement Unit (PMU) for the monitoring and control of grid stability and quality”, 16e Congrès International de Métrologie, Paris, France, 7-10 octobre 2013.

NDILIMABAKA H. et BLANC I., Smart electrical grids”, 15e Congrès international de métrologie, Paris, France, 3-6 octobre 2011.

NDILIMABAKA H. et BLANC I., “Characteristics of PMU calibrator and PMU architecture”, Progress JRP-SmartGrid meeting, Teddington, Royaume-Uni, mai 2011.

Partenaires

Partenaires du JRP-ENG04 :

  • VSL (Pays-Bas),
  • INM (Roumanie),
  • CEM (Espagne),
  • CMI (République Tchèque), METAS (Suisse),
  • FFII (Espagne), INRIM (Italie), LNE (France),
  • MIKES (Finlande),
  • NPL (Royaume-Uni),
  • PTB (Allemagne),
  • SIQ (Slovénie),
  • SMD (Belgique),
  • SMU (Slovaquie),
  • SP (Suède),
  • Trescal (Danemark),
  • TUBITAK (Turquie),
  • EFZN, 
  • UBS (Allemagne),
  • EIM (Grèce)

Partenaires du LNE :

  • Elspec (fabricant de PMU),
  • EDF (centre de recherche des Renardières)