Ce projet européen aborde un des grands défis qu’est l'énergie de demain en visant le développement de nouvelles technologies, de nouveaux équipements et les moyens de mesures métrologiques appropriés pour exploiter de nouvelles sources d'énergie. Il aborde spécifiquement la métrologie pour les technologies de récupération d'énergie.

Objectifs

Fournir un cadre métrologique pour le développement des technologies de récupération de l’énergie existante sous forme de chaleur, de mouvement ou de vibration par la mesure de l’efficacité de conversion en énergie électrique des microgénérateurs ;

Fournir un cadre métrologique pour le développement des technologies de récupération de l’énergie existante sous forme de chaleur, de mouvement ou de vibration par des mesures des propriétés thermiques, mécaniques et électriques des matériaux utilisés et de leurs caractéristiques de transduction en énergie électrique ;

Fournir un cadre métrologique pour le développement des technologies de récupération de l’énergie existante sous forme de chaleur, de mouvement ou de vibration en faisant des liens entre propriétés des matériaux aux échelles nanométrique et macroscopique ;

Fournir un cadre métrologique pour le développement des technologies de récupération de l’énergie existante sous forme de chaleur, de mouvement ou de vibration par le développement de la métrologie associée aux mesures sur des dispositifs multifonctionnels et nanostructurés.

Résumé et Premiers Résultats

Image
ENG-EM-01_Fig1

Les sources d'énergie d'intérêt ici sont les sources d'énergie largement inexploitées et existantes dans l'environnement sous forme de chaleur résiduelle, de mouvements ou de vibrations. Ces sources d'énergie peuvent être de moyenne énergie (W - kW), par exemple transfert de chaleur des gaz d'échappement des véhicules en énergie électrique pour recharger les batteries, mais aussi de faibles quantités d’énergie et de puissance (µW - mW) pouvant alimenter les appareils électroniques portatifs et mobiles de communication.

L'objectif général scientifique et technologique de ce projet est de fournir, au sein de l'Europe, le cadre métrologique, les capacités techniques et les connaissances scientifiques pour permettre le développement des technologies de récupération de l’énergie qui soient efficaces et commercialement intéressantes.

Ce projet a débuté en septembre 2010 et a été programmé sur une durée de 3 ans. Le travail a été réparti entre 8 partenaires et était coordonné par le PTB (Allemagne).

Le LNE a été impliqué dans les lots de tâches relatives à l’évaluation de l’efficacité de conversion des microgénérateurs (énergie mécanique en énergie électrique) et à l’évaluation des matériaux, de types piézoélectrique et magnétique, destinés à la récupération d’énergie.

Fabrication de microgénérateurs MEMS électrostatiques et piezoélectriques

Pour pouvoir étudier les paramètres clés impactant  l’efficacité de la conversion d’énergie des récupérateurs, le LNE a développé plusieurs microgénérateurs éléctrostatiques et piezoélectriques à base de MEMS (Micro-ElectroMechanical Systems).

Le LNE a conçu quatre types de structures de microgénérateurs à base de MEMS électrostatiques. Les fréquences de résonance sont de 800 Hz, 1 kHz, 2 kHz et 4 kHz. Avec l’équipe de l’ESIEE, des simulations VHDL ont été effectuées ; elles ont montré que la puissance récupérée par ces systèmes serait entre 0,6 µW et 60 µW. De plus, une série de cantilevers de différentes dimensions ont été fabriqués. L’ensemble de ces structures a été fabriqué par Tronic’s Microsystems et son procédé MPW sur la base d’un substrat SOI.

Image
ENG-EM-01_Fig2

 

 

 

 

Image
ENG-EM-01_Fig3

 

De plus, des microgénérateurs MEMS piézoélectriques à base de couches minces d’AlN déposées sur un substrat de SOI ont été fabriqués en collaboration avec le laboratoire TIMA à Grenoble. Les couches d’AlN d’épaisseur 2 µm sont déposées sur un cantilever servant de masse sismique dont les dimensions ont été définies pour avoir des fréquences de résonances autour de 200 Hz. Ces fréquences de résonance des récupérateurs, relativement faibles, sont compatibles avec plusieurs applications et notamment dans l’automobile pour alimenter les circuits d’alimentation auxiliaires.

Ces différents échantillons ont été caractérisés et mesurés par les quatre partenaires du projet LNE, PTB, NPL et INRIM. Le but était de définir une approche universelle pour évaluer les performances en termes de récupération d’énergie d’une technologie par rapport à une autre. Plus généralement, une analyse détaillée a été réalisée pour les trois types de transduction (piézoélectrique, magnétique et électrostatique) étudiés dans ce projet. Un modèle théorique de la conversion d’énergie a été développé en support de l’évaluation expérimentale. Le résultat de cette étude a montré que malgré l’importance de l’évaluation de l’efficacité de conversion des microgénérateurs, la puissance et l’énergie récupérées restent les paramètres les plus importants pour le choix des utilisateurs.

Développement d’une méthode de mesure précise des propriétés mécaniques de dispositifs MEMS

Le LNE a développé une méthode originale basée sur une mesure de distorsion harmonique pour déterminer les fréquences de résonance des systèmes électromécaniques comme les récupérateurs d’énergie de vibration. Plus généralement, ce dispositif expérimental permet d’accéder à des informations précises sur les caractéristiques mécaniques et les propriétés de n'importe quel dispositif MEMS par des mesures électriques. Cette nouvelle méthode permettra d’aider les fabricants à améliorer la performance des produits à base de MEMS, à développer de nouvelles fonctionnalités, à réduire la consommation énergétique des dispositifs, à répondre aux exigences du marché en termes de miniaturisation et à augmenter la fiabilité de ces dispositifs MEMS.

La technique du LNE fonctionne en appliquant un courant alternatif à fréquence variable à travers le dispositif et en analysant le contenu harmonique de la tension de sortie des composants. Après un traitement numérique, la technique permet de déterminer toutes les caractéristiques mécaniques du dispositif MEMS dont le facteur d'amortissement (impact négatif sur l'amplitude des oscillations), et la fréquence qui détermine la production maximale d'énergie électrique de capteurs MEMS récupérateurs d’énergie à partir des vibrations mécaniques de l’ambiante.

La mesure est très facile et relativement rapide à effectuer, car il suffit de connecter le système en deux fils, d’appliquer un courant et d’échantillonner le signal de sortie. Cette méthode ne nécessite pas de gros investissements, mais permet la connaissance très précise des paramètres et les limites de performance de dispositifs à base de MEMS.

Plusieurs dispositifs MEMS ont été testés au LNE en utilisant cette technique et leurs fréquences de résonance mécaniques ont été mesurées avec une grande précision (incertitude relative de 10–3).

À l'avenir, la technique pourrait être utilisée pour suivre les processus de production ; ce qui permettrait aux fabricants de réaliser des MEMS correspondant exactement aux besoins de chaque système particulier. En effet, cette technique précise et traçable pourrait être mise en œuvre pour les tests et les mesures en ligne en cours de production. Cela pourrait fournir un avantage concurrentiel clé pour les entreprises européennes en permettant une fabrication de qualité par l’introduction des principes métrologiques dans les processus industriels.

 

Site internet du projet :

http://projects.npl.co.uk/energy_harvesting/

Impacts Scientifiques et Industriels

  • Dans le cadre du projet EMRP-2009/ENG02, 11 newsletters ont été éditées et le projet européen a généré une cinquantaine d’articles dans les médias ;
  • De nouvelles techniques et méthodes métrologiques ont été développées pour l'évaluation et l'amélioration des systèmes micro- et nanogénérateurs ;
  • Une infrastructure de mesure a été améliorée pour son adaptation aux appareils de récupération d'énergie. Cela permettra de soutenir le développement de générateurs électriques exploitant tous les types de conversion de l'énergie thermique et mécanique en énergie électrique, en ciblant les appareils de petite taille ;
  • Un guide de bonnes pratiques industrielles a été produit pour la récupération d'énergie ;
  • Des données d’entrée ont été fournies à des comités techniques de normalisation relatifs à la récupération d'énergie afin d’améliorer les normes existantes et avoir ainsi un impact fort sur le développement plus rapide des produits de récupération de l’énergie ;
  • Au LNE, à l’issue du projet européen ENG02, Harvesting, le LNE s’est engagé fin 2013 dans un autre projet collaboratif national, financé par le ministère chargé de l’industrie (FUI) dans le cadre du pôle de compétitivité aérospatial ASTech, intitulé « Récupération d'énergie pour capteurs autonomes programmables ». Dans ce projet de trois années, les partenaires sont des utilisateurs de ces technologies dans le secteur aérospatial, des PME et des laboratoires de recherche publique comme le LNE.

Publications et communications

BOUNOUH A. et BÉLIÈRES D., “New method based on electrical harmonic distortion analysis for electromechanical characterizations of MEMS devices”, Microtech 2013, Washington DC – Etats-Unis, 2013.

BOUNOUH A., CAMON H. et BELIÈRES D., “Wideband high stability MEMS based AC voltage references”, IEEE Trans. Inst. Meas., 99, 2013.

BOUNOUH A. et BÉLIÈRES D., “Electromechanical characterizations of MEMS based energy harvesters by harmonic sampling analysis method”, IMEKO-TC4, Barcelone, Espagne, 2013.

BOUNOUH A. et BÉLIÈRES D., “Resonant frequency characterization of MEMS based energy harvesters by harmonic sampling analysis method”, Measurement, 2013, 52, 71-76.

BOUNOUH A., “MEMS based electrostatic vibration energy harvesters”, EMRP Industry meeting and worhshops, Braunschweig, Allemagne, 28-29 août 2013.

BOUNOUH A., “Metrology for energy harvesting”, Journées nationales sur la récupération et le stockage d’énergie pour l’alimentation des microsystèmes autonomes, Grenoble, France, 26-27 mars 2012.

BOUNOUH A., “Fabrication of specific electrostatic energy harvesting for conversion efficiency measurements”, JRP-Energy Harvesting mid-term meeting, Londres, Royaume-Uni, 22-23 mai 2012.

BOUNOUH A. et BÉLIÈRES D., “Harmonic analysis method for electromechanical characterisations of MEMS based energy harvesters”, CPEM 2012, Washington, Etats-Unis, 2-6 juillet 2012.

BOUNOUH A., “Development of AlN based piezo energy harvesters”, JRP Energy Harvesting Technical meeting, Turin, Italie, 20-22 nov. 2012.

BOUNOUH A. et al., “Metrology for energy harvesting”, Journées nationales sur la récupération et le stockage d’énergie pour l’alimentation des microsystèmes autonomes, Paris, France, 18-19 nov. 2010.

Les travaux du LNE ont été cités dans les revues de presse suivantes :

MEMS mechanics measured electronically”, Electronics Weekly,
http://www.electronicsweekly.com/news/research/mems-mechanics-measured-electrically-2013-05/

 “New technique for MEMS power measurement”, Engineering & Technology,
http://eandt.theiet.org/news/2013/may/mems-lne.cfm

New Method to Precisely Measure MEMS Output”, Azonano, http://www.azonano.com/news.aspx?newsID=27357

Unveiling the First Precise MEMS Output Measurement Technique”, Red Orbit,
http://www.redorbit.com/news/technology/1112846304/first-precise-mems-output-measurement-technique-051413/

 “First precise MEMS output measurement technique unveiled”,
R&D Magazine, http://www.rdmag.com/news/2013/05/first-precise-mems-output-measurement-technique-unveiled
Nanowerk, http://www.nanowerk.com/news2/newsid=30486.php
Science newsline, http://www.sciencenewsline.com/articles/2013051417570011.html
Science Daily, http://www.sciencedaily.com/releases/2013/05/130514122749.htm
PhysNews, http://www.physnews.com/nano-physics-news/cluster575627274/
Science Codex, http://www.sciencecodex.com/first_precise_mems_output_measurement_technique_unveiled-112144.

Partenaires

Partenaires du JRP-ENG02 :

  • PTB (Allemagne),
  • CMI (République Tchèque),
  • INRIM (Italie),
  • LNE (France),
  • MIKES (Finlande),
  • NPL (Royaume-Uni),
  • SIQ (Slovénie)

Partenaires du LNE :

  • ESIEE,
  • TIMA,
  • LAAS,
  • Thales,
  • Coventor

L’utilisation croissante de films minces notamment dans les domaines de la micro-électronique, des semi-conducteurs ou des vitrages intelligents nécessite une connaissance précise des propriétés thermiques des matériaux aux échelles micrométriques et sub-micrométriques. Si les propriétés thermiques de la majorité des matériaux massifs sont bien connues, elles peuvent être très différentes pour les films minces du fait de leur microstructure spécifique. Leur connaissance est nécessaire pour comprendre les phénomènes de transfert aux différentes échelles pour optimiser la structure des matériaux en fonction des propriétés recherchées et accroître les performances des systèmes concernés.

Objectifs

Développer un équipement de référence (traçable au SI) pour la mesure des propriétés thermiques aux échelles micrométriques et sub-micrométriques sur une gamme de température de l’ambiante à 1 000 °C.

Mesure de matériaux de référence adaptés aux outils de microscopie thermique existants sur la plage de température de 23 °C à 1 000 °C

Résumé et premiers résultats

Image
Montage de radiométrie photo-thermique
Montage de radiométrie photothermique

Un banc de radiométrie photo-thermique permettant de déterminer les propriétés thermiques de couches micrométriques et sub-micrométriques jusqu’à 1 000 °C a été développé. Celui-ci repose sur le principe de la radiométrie photo-thermique. Il permet de travailler selon deux configurations. La première configuration (qualifiée de fréquentielle) correspond à la radiométrie photo-thermique modulée, i.e. avec une source de chaleur périodique, et permet de déterminer la résistance thermique d’un échantillon couche mince. La seconde configuration (qualifiée de temporelle) s’appuie sur la radiométrie photo-thermique pulsée, i.e. avec un chauffage impulsionnel, et permet d’accéder à la diffusivité thermique de matériau couche mince.

Image
Principe de la radiométrie photothermique modulée

Compte tenu des contraintes de l’installation (en terme de gamme de fréquence et de température couverte et aussi en terme non accessibilité de certains capteurs), des procédures spécifiques d’étalonnages ont été développées pour permettre l’étalonnage in situ ou operando de l’installation. Ces procédures ont été développées dans le cadre du projet européen "Metrology for the manufacturing of thin films" (EMRP/IND07) et sont décrites dans le guide technique "Good practice guide for the calibration of IR photothermal radiometry device dedicated to the measurement of thermal transport properties of thin films" rédigé par le LNE.

 

L’installation a été testée avec différents matériaux dont des échantillons d’alliage de chalcogénure Ge2Sb2Te5 (matériaux utilisé dans les mémoires à changement de phase) dans le cadre du projet européen "Metrology for the manufacturing of thin films" (EMRP/IND07). Les mesures ont été réalisées de l’ambiante à 400 °C pour des échantillons de différentes épaisseurs. Les résultats de conductivité thermique et de résistance thermique de contact ont été comparés à la littérature. D’autre part, la platine chauffante permettant la maîtrise de l’environnement de l’échantillon a été modifiée pour intégrer un dispositif permettant de réaliser des mesures de conductivité thermique sous champ électrique dans le cadre du projet "Metrology of electro-thermal coupling for new functional materials technology" (EMRP/NEW09).

Impacts scientifiques et industriels

Possibilité de mesure de conductivité thermique et de résistance thermique de films minces.

Publications et communications

FLEURENCE N., “Good practice guide for the calibration of IR photothermal radiometry device dedicated to the measurement of thermal transport properties of thin films”, https://www.ptb.de/emrp/fileadmin/documents/eng53/documents/WP4/GPG_IRPhotothermalRadiometry.pdf, 2017.

FLEURENCE N., HAY B., DAVEE G., CAPPELLA A. et FOULON E., "Thermal conductivity measurements of thin films at high temperature modulated photothermal radiometry at LNE", Physica Status Solidi (A) Applications and Materials Science, 212, 3, 2015, DOI: 10.1002/pssa.201400084.

CAPPELLA A., BATTAGLIA J.-L., SCHICK V., KUSIAK A., LAMPERTI A., WIEMER C. et HAY B., “High Temperature Thermal Conductivity of Amorphous Al2O3 Thin Films Grown by Low Temperature ALD”, Advanced Engineering Materials, 15, 11, 2013, 1046-1050, DOI: 10.1002/adem.201300132.

CAPPELLA A., HAY B., BATTAGLIA J.-L., SCHICK V., KUSIAK A., WIEMER C. et LONGO M., “Photothermal radiometry applied in nanoliter melted tellurium alloys”, Materials challenges and testing for supply and energy and resources, 2012, 273-283 ; DOI: 10.1007/978-3-642-23348-7_25.

BATTAGLIA J.-L., HAY B., CAPPELLA A., VARESI E., SCHICK V., KUSIAK A., WIEMER C., LONGO M. et GOTTI A., “Temperature-dependent thermal characterization of Ge2Sb2Te5 and related interfaces by the photothermal radiometry technique”, 15th International Conference on Photoacoustic and Photothermal Phenomena (ICPPP15) - Journal of Physics: Conference Series, 214, 2012, DOI: 10.1088/1742-6596/214/1/012102.

FLEURENCE N. et HAY B., “Photothermal radiometry device temperature calibration for thinfilms thermal properties measurement”, ALTECH E-MRS Spring Meeting 2017, mai 2017.

FLEURENCE N. et HAY B., “Photothermal radiometry device temperature calibration for thin films thermal properties measurement”, Tempmeko 2016, Zakopane, Pologne, 26 juin- 1 juillet 2016,

FLEURENCE N., HAY B. et FOULON E., « Caractérisation thermique de couches minces en fonction de la température par radiométrie photothermique modulée », 17e Congrès international de métrologie, 21-24 septembre 2015.

HAY B., FLEURENCE N., FILTZ J.-R. et DAVÉE G., « EMRP ThinErgy Project – Thermal characterization of thin films materials », “Thermophysical Quantities” task group meeting of CCT, Boulder, U.S.A., 23 juin 2015

FLEURENCE N., HAY B. et FOULON E., “Temperature calibration of photothermal radiometry apparatus from room temperature to 420 °C”, METTI Thermal measurements and inverse techniques, 6th edition, Biarritz, France, 1-6 mars 2015.

FLEURENCE N., HAY B., BATTAGLIA J.-L., KUSIAK A. et FOULON E., “Temperature calibration of modulated photothermal radiometry apparatus”, 20th European Conference on Thermophysical Properties, Porto, Portugal, 31 août-4 septembre 2014, http://ectp2014.fc.up.pt/Programme/Oral/OD1_11.pdf.

HAY B., CAPPELLA A. et DAVEE G., « Projet EMRP "thin films" : développement en cours au LNE pour la mesure de conductivité thermique », 16e Congres international de métrologie, Paris, France, 7-10 octobre 2013.

CAPPELLA A., « Caractérisation thermique à haute température de couches minces pour mémoires à changement de phase depuis l'état solide jusqu'à l'état liquide », 2012, Thèse, Laboratoire transferts écoulement fluides énergétiques TREFLE.

CAPPELLA A., HAY B., BATTAGLIA J.-L., SCHICK V., KUSIAK A., WIEMER C. et LONGO M., “Photothermal Radiometry applied in nanoliter melted tellurium alloys”, WMRIF (World Materials Research Institutes Forum) Young Materials Scientist Workshop, Berlin, Allemagne, 31 août-3 septembre 2010.

CAPPELLA A., BATTAGLIA J.-L., HAY B., SCHICK V., KUSIAK A., WIEMER C., LONGO M., VARESI E. et GOTTI A., “In-situ thermal characterization of Ge2Sb2Te5 up to 400 °C”, Congres ANC-4 international conference on amorphus and nanostructured chalcogenide, Constanta, Roumanie, 2009.

Partenaires

  • ENSAM-TREFLE (thèse et action d’incitation)

Afin d’anticiper l’épuisement des ressources fossiles (pétrole, gaz, charbon) et de réduire les émissions de gaz à effet de serre, les gouvernements actuels encouragent le développement des biocarburants, produits à partir de matériaux organiques non fossiles. La Directive européenne 2009/28/CE promeut ainsi l’utilisation des biocarburants et d’autres énergies renouvelables dans les transports.

Objectifs

Développer des matériaux et des méthodes de référence pour garantir la conformité des mesures portant sur les biocarburants liquides de première génération (bioéthanol et biodiesel)

Résumé et premiers résultats

Image
ENG-QM-01_Fig1

En 2007, une force tripartite, composée du Brésil, de l’Union Européenne et des Etats-Unis, a toutefois publié un document (White Paper on Internationaly Compatible Biofuels Standards) mettant en évidence un manque d’harmonisation internationale des normes relatives aux biocarburants de première génération, qui constitue un obstacle à leur circulation sur le marché mondial.

Le développement de matériaux et de méthodes de référence s’avère donc crucial pour assurer la fiabilité des résultats de caractérisation de ces biocarburants liquides de première génération (bioéthanol et biodiesel). Ce constat a conduit plusieurs Laboratoires Nationaux de Métrologie européens à s’associer au sein d’un projet commun (JRP, Joint Research Project), financé en partie par la Commission Européenne et intitulé « Metrology for biofuels ». Les travaux portent à la fois sur les paramètres physiques (masse volumique, viscosité, pouvoir calorifique) et chimiques (impuretés organiques, pH, conductivité) utilisés pour évaluer la qualité du produit. Des méthodes y sont également développées pour déterminer l’origine géographique et organique des biocarburants, afin de combattre les détournements de subventions.

Le LNE, pilote de ce JRP, est intervenu plus particulièrement sur les questions de mesures de pH et de conductivité du bioéthanol, ainsi que sur la caractérisation de masses volumiques, de viscosité et de pouvoir calorifique.

Dans le cas des caractérisations électrochimiques, des mesures de pHe (pH de l’éthanol) ont été réalisées en appliquant un système primaire (cellules de Harned). La méthode a été mise au point pour les tampons phtalate et phosphate dans un mélange eau/éthanol commercial (50 wt%) aux températures de 15 °C, 25 °C et 35 °C, le protocole utilisé étant celui typiquement appliqué pour les solutions aqueuses. La comparaison des résultats obtenus dans l’eau ainsi que dans le mélange hydro-alcoolique étudié a permis de mettre en évidence l’existence d’une «erreur alcoolique», c’est-à-dire l’influence du solvant sur les caractéristiques du tampon. Cela a démontré l’importance d’étalonner les pH-mètres avec des solutions tampons appropriées.

 

Image
ENG-QM-01_Fig2

 

Le potentiel standard E0 de l’électrode de référence Ag/AgCl a été caractérisé dans cette solution eau – éthanol (50 wt%) et les contributions de différents paramètres dans le bilan d’incertitudes sur E0 ont été évaluées en fonction de la température. Il apparaît ainsi que l’impact de la fonction d’acidité sur l’incertitude des mesures de pH décroit avec la température. Les résultats montrent par ailleurs qu’il est possible d’employer ce type de tampon dans des conditions traçables pour obtenir des valeurs de pH avec un bon niveau de confiance.

L’influence de la microstructure des électrodes de référence Ag/AgCl sur leurs caractéristiques électrochimiques a également fait l’objet d’investigations. Une corrélation entre le comportement électrochimique de l’électrode et ses caractéristiques physiques de surface, et en particulier sa porosité, a ainsi pu être mise en évidence. Des suggestions ont pu être proposées d’une part pour l’utilisation de techniques non destructives pour l’évaluation de la porosité des électrodes Ag/AgCl, et d’autre part pour l’évaluation de la réponse électrochimique des électrodes Ag/AgCl en fonction de leur porosité et de la quantité d’éthanol dans le solvant (0, 30, 50 et 70 wt%). Ces résultats ont des conséquences directes quant à l’amélioration de la précision et de la comparabilité des mesures primaires de pH.

La validation de la méthode développée pour la mesure du pHe a été obtenue à travers une comparaison avec la PTB (Allemagne), l’INMETRO (Brésil) et le NMIJ (Japon) sur les deux tampons phtalate et phosphate. Les résultats montrent, à 25 °C par exemple, un écart entre les quatre laboratoires de 0.0031 pH pour le tampon phtalate et de 0.0035 pH pour le tampon phosphate. Ils sont de ce fait très satisfaisants.

Impacts scientifiques et industriels

  • Commission de normalisation concernée BNPe P06 et P08
  • Norme NF ISO 16000-3 (Décembre 2011)
  • Fourniture de valeurs de référence dans le cadre d’essais d’aptitudes impliquant des laboratoires d’essais

Publications et communications

STOICA D., BREWER P.J., BROWN R.J.C. et FISICARO P., “Influence of the preparation method on the electrochemical behaviour of Ag/AgCl reference electrodes”, Electrochimica Acta, 56, 27, 2011, 10009-10015, DOI: 10.1016/j.electacta.2011.08.089.

STOICA D., YARDIN C., VASLIN-REIMANN S. et FISICARO P., “Evaluation of standard potential of Ag/AgCl electrode in a 50 wt% water-ethanol mixture”, Journal of Solution Chemistry, 40, 11, 2011, 1819-1834, DOI: 10.1007/s10953-011-9758-3.

BREWER P.J., STOICA D. et BROWN R.J.C., “Sensitivities of key parameters in the preparation of silver/silver chloride electrodes used in Harned cell measurements of pH”, Sensors, 11, 8, 2011, 8072-8084, DOI: 10.3390/s110808072.

 

LARDY-FONTAN S., CABILLIC J., PEIGNAUX M., STUMPF C., LEPOT B., LEOZ E., MIEGE C. et LALÈRE B., “The usefulness of assignation of reference values in inter laboratories comparisons French demonstrations in the field of environmental survey”, IMEKO TC Conference (TC8 - TC23 - TC24) “Metrological traceability in the globalisation age”, Paris, France, 6-8 avril 2011.

STOICA D. et FISICARO P., “Determination of standard pH values for reference potassium hydrogen phtalates buffer solutions in water-ethanol mixture (50 wt%)”, 15e Congrès international de métrologie, Paris, France, 3-6 octobre 2011.

Partenaires

  • BAM (DE),
  • PTB (DE),
  • DFM (DK),
  • VSL (NL),
  • INRIM (IT),
  • SP (SW),
  • NPL (GB),
  • LGC (GB),
  • TÜBITAK (Turq.),
  • JRC-IRMM (UE),
  • NEL (GB),
  • Université de Rostock (DE),
  • METROSERT (ES)

Téléchargement de documents

Rapports au format Euramet
Document pdf - 790 Ko
Document pdf - 115 Ko