Les nanoparticules (NPs) manufacturées sont définies comme étant des matériaux d’origine anthropique, de taille inférieure à 100 nm dans au moins une de leur dimension. Leur petite taille leur confère des propriétés physico-chimiques particulièrement intéressantes pour de nombreuses applications industrielles ou médicales et il est donc inévitable que ces matériaux se retrouvent dans l’environnement, créant alors le besoin de les détecter, de les identifier et de les quantifier.

Objectifs

Développer les compétences techniques nécessaires à la mise en route de nouveaux moyens analytiques de caractérisation des NPs en milieux liquides (A4F-UV-MALS/ICP-MS et spICP-MS)

Evaluer les performances métrologiques de ces deux techniques et envisager leur couplage

Résumé et premiers résultats

Image
ENV-QM-07_Fig1

Très peu d’études se sont intéressées à ce jour à la question de la présence des NPs manufacturées dans les eaux naturelles, du fait de l’absence de méthodes analytiques adaptées au large spectre de NPs qui peuvent être rencontrées, aux faibles concentrations attendues dans les milieux aquatiques et à la complexité des matrices environnementales.

La mise en œuvre, avant la mesure, de la technique de fractionnement par couplage flux-force (FFF ou A4F) s’avère pertinente comme méthode séparative dans le cas de matrices complexes (environnementale, agroalimentaire, cosmétique, …). Via son couplage à différents types de détecteurs (UV, fluorescence, spectrométrie de masse à plasma induit (ICP-MS), diffusion de lumière statique MALS ou dynamique DLS), cette technique permet par ailleurs d’accéder de façon directe à de nombreuses propriétés des nano-objets (concentration de particule en nombre, taille, distribution en taille, forme, état d’agrégation et/ou d’agglomération, composition élémentaire) qu’il est important de pouvoir caractériser dans un cadre réglementaire ou pour évaluer leur interaction avec l’environnement ou un organisme vivant. Les fractions séparées de l'échantillon peuvent par ailleurs être collectées et analysées « off-line » par des techniques complémentaires, telles que la microscopie électronique par balayage (MEB), en transmission (MET) ou la microscopie à force atomique (AFM), qui apportent de nouvelles informations, notamment sur la forme et la taille des particules.

La spectrométrie de masse à source à plasma induit, utilisée en mode comptage individuel (spICP-MS), est quant à elle une technique en développement ayant le potentiel d'apporter des réponses en terme de composition, de quantité et de distribution en taille des nanoparticules métalliques en suspension dans des matrices aqueuses pour des faibles concentrations pertinentes du point du vue environnemental. Dans les deux cas cependant, il reste encore beaucoup de développements à réaliser du point de vue de la métrologie pour fiabiliser les résultats qui peuvent être obtenus.

Ce projet vise à développer au LNE les compétences techniques nécessaires à la mise en route de nouveaux moyens analytiques de caractérisation des NPs, basés sur les deux techniques A4F-UV-MALS-ICP-MS et spICP-MS, afin d’en évaluer les performances métrologiques et les possibilités de couplage. Le projet se focalisera sur les NPs manufacturées de forme approximativement sphérique (SiO2,TiO2, Ag & CeO2) et exploitera deux axes de recherche :

  • la caractérisation des NPs manufacturées en réponse aux besoins de fiabilité appelés par le décret français n° 2012-232 du 17 février 2012 (déclaration annuelle obligatoire des substances à l’état nanoparticulaire imposée aux acteurs industriels et académiques français) et par la recommandation UE du 18 octobre 2011 (définition d’un nanomatériau) ;
  • la caractérisation des NPs manufacturées dans des milieux environnementaux afin de mieux comprendre leur devenir dans l'environnement, ainsi que leur rôle dans le transport des polluants.

Le développement des compétences sur les deux techniques A4F-UV-MALS-ICP-MS et spICP-MS nécessitera initialement l'étude des NPs dans des systèmes simples et/ou modèles, avant de passer à des milieux plus complexes. Des compétences seront par ailleurs à développer dans le cadre du premier axe au niveau de l'étape de préparation des échantillons et de la caractérisation en taille.

Image
ENV-QM-07_Fig2

Impacts scientifiques et industriels

  • Renforcement du positionnement LNE dans le domaine émergent des nanosciences, notamment par la mise en œuvre de techniques analytiques en plein essor et actuellement encore peu répandues (A4F et spICP-MS)
  • Evaluation des performances métrologiques des techniques A4F et spICP-MS pour la caractérisation des NPs en milieux liquides
  • Fiabilisation de l’étape pré-analytique en vue de la déclaration obligatoire des substances à l’état nanoparticulaire (décret n° 2012-232 du 17 février 2012)

Partenaires

  • IPGP

Projets associés

Développement de la plate-forme CARMEN

L’engouement observé autour des nanotechnologies depuis une dizaine d’années doit faire face aujourd’hui à différentes problématiques, aussi bien techniques que sociétales. L’ensemble des acteurs impliqués dans ce domaine émergent s’accorde néanmoins sur le fait que le développement d’une métrologie et d’une instrumentation adaptée au domaine nanométrique (1 nm – 100 nm) aurait un effet « catalyseur » sur le développement global des nanotechnologies.