La stabilité des horloges atomiques fonctionnant dans le domaine optique est actuellement limitée par deux facteurs qui sont : le bruit de fréquence du laser utilisé pour sonder le système atomique et le bruit de projection quantique qui intervient lors de la détection de l'état de ce système. Ce projet européen QESOCAS porte sur ces facteurs qui limitent actuellement les incertitudes autour de 10-18. Ces études pourraient avoir des retombées sur la plupart des horloges et ouvrir la voie à de nouvelles applications.

Objectifs

Utiliser l’intrication quantique pour améliorer les performances métrologiques des horloges optiques et des capteurs atomiques

Résumé et résultats

Image
FUN-TF-03-Fig1
Dernière génération d’horloge optique à atomes de strontium mise au point au LNE-SYRTE.

Le but de ce projet collaboratif était donc d’étudier comment l’utilisation d’états issus de l’ingénierie quantique et des méthodes de détection associées pourraient permettre d’améliorer les horloges optiques et les capteurs atomiques. Le projet visait d’abord la génération et la détection d’états appropriés, prenant en compte l’ensemble des contraintes liés aux mesures de précision. Dans un second temps, des expériences utilisant ces états devaient démontrer (au niveau de la preuve de principe) le bénéfice possible pour les horloges et les capteurs.

Le projet européen était coordonné par le LNE-SYRTE et, grâce à la diversité des compétences présentes dans le consortium (5 laboratoires nationaux de métrologie et 4 laboratoires de recherche), divers cas et méthodes ont été couverts : horloges à ions, horloges à réseau optique, génération d’états par les interactions ou par la mesure quantique, bénéfices relatifs à la stabilité et l’exactitude. Le projet visait à identifier les approches les plus prometteuses et les voies pour une utilisation élargie de l’ingénierie quantique en métrologie.

En particulier, le LNE-SYRTE a décliné ces objectifs dans le cas de l’horloge à réseau optique d'atomes de strontium en exploitant la détection non-destructive. Des méthodes similaires ont été également poursuivies au LP2N (Bordeaux), grâce à une bourse allouée pour un échange de chercheur, sur la manipulation de la cohérence de la transition d'horloge du rubidium par des mesures faibles en cavité, en vue d'applications sur les capteurs inertiels.

Au LNE-SYRTE, une nouvelle enceinte à vide a été conçue et assemblée pour l'horloge à réseau optique de strontium (SR1). Les atomes sont piégés au centre d'une cavité optique dont les miroirs constituent deux accès optiques de cette enceinte à vide. Ces miroirs sont réfléchissants à la fois à 813 nm (longueur d'onde du laser qui forme le réseau optique capable de piéger les atomes) avec une finesse de 180, et à 461 nm (finesse d'environ 16 000), longueur d'onde de la transition la plus intense du strontium utilisée pour la détection des atomes dans l'état fondamental. Le principe de la détection consiste en la mesure de la position des résonances de la cavité à 461 nm, qui sont déplacées d'une fréquence proportionnelle au nombre d'atomes piégés dans l'état fondamental. Ce type de détection permet un fort rapport signal à bruit, via la grande longueur d'interaction entre la lumière et les atomes, permise par la cavité.

Toutefois plusieurs défis sont apparus, notamment associés à la grande finesse de la cavité :

  • les fluctuations relatives de longueur de la cavité et les fluctuations de fréquence du laser à 461 nm se traduisant également par une modification de la position des résonances de la cavité,
  • la conception mécanique devait être compatible avec le fonctionnement du dispositif en tant qu'horloge à réseau optique à l'état de l'art,
  • la force de transition énergétique à 461 nm du strontium impose de travailler avec un grand désaccord, une faible puissance et un temps d'interrogation court pour ne pas saturer la transition,
  • la séquence temporelle de la détection devait pouvoir être insérée dans la séquence de l'horloge, avec en particulier la nécessité d'éteindre le faisceau de détection pendant l'interrogation de la transition d'horloge.

Les activités menées par le LNE-SYRTE dans le cadre de ce projet européen ont permis de concevoir un modèle théorique pour la détection hétérodyne de la position des résonances de la cavité, de concevoir et d’assembler une enceinte pour l’ultravide pour accueillir la détection non- destructive, d’obtenir des atomes ultra froids dans le réseau optique et d’observer des résonances étroites sur la transition d’horloge, et d’observer et de caractériser un signal atomique. Le rapport signal à bruit permet la détection de 5 atomes en 1 μs, avec 38 photons diffusés.

En parallèle du développement de la détection non destructive, le fonctionnement en tant qu'horloge de la nouvelle enceinte à vide a été démontré, avec un bilan d’exactitude au niveau de 4×10-17, et une comparaison avec l’horloge SR2 au niveau de (2,3 ± 7,1)×10−17.

Image
FUN-TF-03_Fig2
Enceinte à vide comprenant les miroirs de la cavité de la détection dans laquelle apparaît un piège magnéto-optique d’atomes de strontium ; En encart : résonance de la cavité à 461 nm en bleu et signal d'erreur en rouge.

Pour clore et disséminer les résultats obtenus durant ce projet européen, un atelier ouvert a été organisé, conjointement avec le consortium du projet JRP ITOC, lors du forum international « European Time and Frequency Forum », en avril 2016 à l’University of York (UK). Des informations sur cet atelier sont accessibles sur le site internet de l’EFTF2016 : http://www.eftf2016.org/satellite-workshop.html.

Les premiers résultats obtenus dans le cadre du projet QESOCAS, notamment le rapport signal à bruit de la détection développée, offrent de nouvelles opportunités pour les horloges à réseau optique qui peuvent être résumées comme suit :

  • L’horloge peut fonctionner avec peu d’atomes, et donc un temps de chargement réduit. Un rapport cyclique de 50 % peut ainsi être atteint, même avec un temps d’interrogation de 150 ms ;
  • Les atomes peuvent être recyclés d’un cycle d’horloge à l’autre ; cela permet d’envisager d’améliorer encore le rapport cyclique et ainsi de réduire considérablement l’effet Dick ;
  •  Le rapport signal à bruit étant compatible avec la génération d’état de spin comprimés, cela permet de dépasser le bruit de projection quantique.

Site internet du projet :

Quantum engineered states for optical clocks and atomic sensors

Impacts scientifiques et industriels

Lever la limite quantique théorique pour favoriser le développement des horloges optiques et des capteurs atomiques en général

Publications et communications

VALLET G., BOOKJANS E., EISMANN U., BILICKI S., LE TARGAT R. et LODEWYCK J., “A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime”, New J. Phys., 19, 083002, 2017, DOI: 10.1088/1367-2630/aa7c84.

LODEWYCK J., BILICKI S., BOOKJANS E., ROBYR J.-L., SHI C., VALLET G., LE TARGAT R., NICOLODI D., LE COQ Y., GUÉNA J., ABGRALL M., ROSENBUSCH P. et BIZE S., “Optical to microwave clock frequency ratios with an operational strontium optical lattice clock”, Metrologia, 53, 1123, 2016, DOI: 10.1088/0026-1394/53/4/1123.

KOHLHAAS R., BERTOLDI A., CANTIN E., ASPECT A., LANDRAGIN A. et BOUYER P., “Phase Locking a Clock oscillator to a coherent atomic ensemble”, Phys. Rev. X, 5, 021011, 2015, DOI; 10.1103/PhysRevX.5.021011.

VANDERBRUGGEN T., KOHLHAAS R., BERTOLDI A., CANTIN E., LANDRAGIN A. et BOUYER P., “Feedback control of coherent spin states using weak nondestructive measurements", Phys. Rev. A, 89, 063619, 2014, DOI: 10.1103/PhysRevA.89.063619.

LODEWYCK J. et al., “Prospects for sub quantum projection noise stability in strontium optical lattice clocks”, Colloqium Quantum Engineering, from Fundamental Aspects to Applications (IQFA), 2016, Paris.

LE TARGAT R. et al., “Towards non-destructive detection of atomic populations in a strontium Optical Lattice Clock”, IFCS (International Frequency Control Symposium), 2016, New-Orleans, USA.

VALLET G. et al., “Cavity enhanced non-demolition measurement on a 87Sr lattice clock”, ETFT (European Time and Frequency Forum), 2016, York, UK.

LE TARGAT R., EISMANN U., SHI C., ROBYR J.L. et LODEWYCK J., “Cavity-enhanced non-destructive detection of atomic populations in Optical Lattice Clocks”, EFTF 2014.

EISMANN U., SHI C., ROBYR J.L., LE TARGAT R. et LODEWYCK J., “Cavity-enhanced non-destructive detection of atomic populations in Optical Lattice Clocks”, EGAS 2014.

Partenaires

Membres du consortium du projet européen QESOCAS :

  • PTB
  • NPL
  • INRIM
  • REG(LUH)
  • REG(IQOQI)
  • REG(IOGS)