Ce projet européen aborde un des grands défis qu’est l'énergie de demain en visant le développement de nouvelles technologies, de nouveaux équipements et les moyens de mesures métrologiques appropriés pour exploiter de nouvelles sources d'énergie. Il aborde spécifiquement la métrologie pour les technologies de récupération d'énergie.

Objectifs

Fournir un cadre métrologique pour le développement des technologies de récupération de l’énergie existante sous forme de chaleur, de mouvement ou de vibration par la mesure de l’efficacité de conversion en énergie électrique des microgénérateurs ;

Fournir un cadre métrologique pour le développement des technologies de récupération de l’énergie existante sous forme de chaleur, de mouvement ou de vibration par des mesures des propriétés thermiques, mécaniques et électriques des matériaux utilisés et de leurs caractéristiques de transduction en énergie électrique ;

Fournir un cadre métrologique pour le développement des technologies de récupération de l’énergie existante sous forme de chaleur, de mouvement ou de vibration en faisant des liens entre propriétés des matériaux aux échelles nanométrique et macroscopique ;

Fournir un cadre métrologique pour le développement des technologies de récupération de l’énergie existante sous forme de chaleur, de mouvement ou de vibration par le développement de la métrologie associée aux mesures sur des dispositifs multifonctionnels et nanostructurés.

Résumé et Premiers Résultats

Image
ENG-EM-01_Fig1

Les sources d'énergie d'intérêt ici sont les sources d'énergie largement inexploitées et existantes dans l'environnement sous forme de chaleur résiduelle, de mouvements ou de vibrations. Ces sources d'énergie peuvent être de moyenne énergie (W - kW), par exemple transfert de chaleur des gaz d'échappement des véhicules en énergie électrique pour recharger les batteries, mais aussi de faibles quantités d’énergie et de puissance (µW - mW) pouvant alimenter les appareils électroniques portatifs et mobiles de communication.

L'objectif général scientifique et technologique de ce projet est de fournir, au sein de l'Europe, le cadre métrologique, les capacités techniques et les connaissances scientifiques pour permettre le développement des technologies de récupération de l’énergie qui soient efficaces et commercialement intéressantes.

Ce projet a débuté en septembre 2010 et a été programmé sur une durée de 3 ans. Le travail a été réparti entre 8 partenaires et était coordonné par le PTB (Allemagne).

Le LNE a été impliqué dans les lots de tâches relatives à l’évaluation de l’efficacité de conversion des microgénérateurs (énergie mécanique en énergie électrique) et à l’évaluation des matériaux, de types piézoélectrique et magnétique, destinés à la récupération d’énergie.

Fabrication de microgénérateurs MEMS électrostatiques et piezoélectriques

Pour pouvoir étudier les paramètres clés impactant  l’efficacité de la conversion d’énergie des récupérateurs, le LNE a développé plusieurs microgénérateurs éléctrostatiques et piezoélectriques à base de MEMS (Micro-ElectroMechanical Systems).

Le LNE a conçu quatre types de structures de microgénérateurs à base de MEMS électrostatiques. Les fréquences de résonance sont de 800 Hz, 1 kHz, 2 kHz et 4 kHz. Avec l’équipe de l’ESIEE, des simulations VHDL ont été effectuées ; elles ont montré que la puissance récupérée par ces systèmes serait entre 0,6 µW et 60 µW. De plus, une série de cantilevers de différentes dimensions ont été fabriqués. L’ensemble de ces structures a été fabriqué par Tronic’s Microsystems et son procédé MPW sur la base d’un substrat SOI.

Image
ENG-EM-01_Fig2

 

 

 

 

Image
ENG-EM-01_Fig3

 

De plus, des microgénérateurs MEMS piézoélectriques à base de couches minces d’AlN déposées sur un substrat de SOI ont été fabriqués en collaboration avec le laboratoire TIMA à Grenoble. Les couches d’AlN d’épaisseur 2 µm sont déposées sur un cantilever servant de masse sismique dont les dimensions ont été définies pour avoir des fréquences de résonances autour de 200 Hz. Ces fréquences de résonance des récupérateurs, relativement faibles, sont compatibles avec plusieurs applications et notamment dans l’automobile pour alimenter les circuits d’alimentation auxiliaires.

Ces différents échantillons ont été caractérisés et mesurés par les quatre partenaires du projet LNE, PTB, NPL et INRIM. Le but était de définir une approche universelle pour évaluer les performances en termes de récupération d’énergie d’une technologie par rapport à une autre. Plus généralement, une analyse détaillée a été réalisée pour les trois types de transduction (piézoélectrique, magnétique et électrostatique) étudiés dans ce projet. Un modèle théorique de la conversion d’énergie a été développé en support de l’évaluation expérimentale. Le résultat de cette étude a montré que malgré l’importance de l’évaluation de l’efficacité de conversion des microgénérateurs, la puissance et l’énergie récupérées restent les paramètres les plus importants pour le choix des utilisateurs.

Développement d’une méthode de mesure précise des propriétés mécaniques de dispositifs MEMS

Le LNE a développé une méthode originale basée sur une mesure de distorsion harmonique pour déterminer les fréquences de résonance des systèmes électromécaniques comme les récupérateurs d’énergie de vibration. Plus généralement, ce dispositif expérimental permet d’accéder à des informations précises sur les caractéristiques mécaniques et les propriétés de n'importe quel dispositif MEMS par des mesures électriques. Cette nouvelle méthode permettra d’aider les fabricants à améliorer la performance des produits à base de MEMS, à développer de nouvelles fonctionnalités, à réduire la consommation énergétique des dispositifs, à répondre aux exigences du marché en termes de miniaturisation et à augmenter la fiabilité de ces dispositifs MEMS.

La technique du LNE fonctionne en appliquant un courant alternatif à fréquence variable à travers le dispositif et en analysant le contenu harmonique de la tension de sortie des composants. Après un traitement numérique, la technique permet de déterminer toutes les caractéristiques mécaniques du dispositif MEMS dont le facteur d'amortissement (impact négatif sur l'amplitude des oscillations), et la fréquence qui détermine la production maximale d'énergie électrique de capteurs MEMS récupérateurs d’énergie à partir des vibrations mécaniques de l’ambiante.

La mesure est très facile et relativement rapide à effectuer, car il suffit de connecter le système en deux fils, d’appliquer un courant et d’échantillonner le signal de sortie. Cette méthode ne nécessite pas de gros investissements, mais permet la connaissance très précise des paramètres et les limites de performance de dispositifs à base de MEMS.

Plusieurs dispositifs MEMS ont été testés au LNE en utilisant cette technique et leurs fréquences de résonance mécaniques ont été mesurées avec une grande précision (incertitude relative de 10–3).

À l'avenir, la technique pourrait être utilisée pour suivre les processus de production ; ce qui permettrait aux fabricants de réaliser des MEMS correspondant exactement aux besoins de chaque système particulier. En effet, cette technique précise et traçable pourrait être mise en œuvre pour les tests et les mesures en ligne en cours de production. Cela pourrait fournir un avantage concurrentiel clé pour les entreprises européennes en permettant une fabrication de qualité par l’introduction des principes métrologiques dans les processus industriels.

 

Site internet du projet :

http://projects.npl.co.uk/energy_harvesting/

Impacts Scientifiques et Industriels

  • Dans le cadre du projet EMRP-2009/ENG02, 11 newsletters ont été éditées et le projet européen a généré une cinquantaine d’articles dans les médias ;
  • De nouvelles techniques et méthodes métrologiques ont été développées pour l'évaluation et l'amélioration des systèmes micro- et nanogénérateurs ;
  • Une infrastructure de mesure a été améliorée pour son adaptation aux appareils de récupération d'énergie. Cela permettra de soutenir le développement de générateurs électriques exploitant tous les types de conversion de l'énergie thermique et mécanique en énergie électrique, en ciblant les appareils de petite taille ;
  • Un guide de bonnes pratiques industrielles a été produit pour la récupération d'énergie ;
  • Des données d’entrée ont été fournies à des comités techniques de normalisation relatifs à la récupération d'énergie afin d’améliorer les normes existantes et avoir ainsi un impact fort sur le développement plus rapide des produits de récupération de l’énergie ;
  • Au LNE, à l’issue du projet européen ENG02, Harvesting, le LNE s’est engagé fin 2013 dans un autre projet collaboratif national, financé par le ministère chargé de l’industrie (FUI) dans le cadre du pôle de compétitivité aérospatial ASTech, intitulé « Récupération d'énergie pour capteurs autonomes programmables ». Dans ce projet de trois années, les partenaires sont des utilisateurs de ces technologies dans le secteur aérospatial, des PME et des laboratoires de recherche publique comme le LNE.

Publications et communications

BOUNOUH A. et BÉLIÈRES D., “New method based on electrical harmonic distortion analysis for electromechanical characterizations of MEMS devices”, Microtech 2013, Washington DC – Etats-Unis, 2013.

BOUNOUH A., CAMON H. et BELIÈRES D., “Wideband high stability MEMS based AC voltage references”, IEEE Trans. Inst. Meas., 99, 2013.

BOUNOUH A. et BÉLIÈRES D., “Electromechanical characterizations of MEMS based energy harvesters by harmonic sampling analysis method”, IMEKO-TC4, Barcelone, Espagne, 2013.

BOUNOUH A. et BÉLIÈRES D., “Resonant frequency characterization of MEMS based energy harvesters by harmonic sampling analysis method”, Measurement, 2013, 52, 71-76.

BOUNOUH A., “MEMS based electrostatic vibration energy harvesters”, EMRP Industry meeting and worhshops, Braunschweig, Allemagne, 28-29 août 2013.

BOUNOUH A., “Metrology for energy harvesting”, Journées nationales sur la récupération et le stockage d’énergie pour l’alimentation des microsystèmes autonomes, Grenoble, France, 26-27 mars 2012.

BOUNOUH A., “Fabrication of specific electrostatic energy harvesting for conversion efficiency measurements”, JRP-Energy Harvesting mid-term meeting, Londres, Royaume-Uni, 22-23 mai 2012.

BOUNOUH A. et BÉLIÈRES D., “Harmonic analysis method for electromechanical characterisations of MEMS based energy harvesters”, CPEM 2012, Washington, Etats-Unis, 2-6 juillet 2012.

BOUNOUH A., “Development of AlN based piezo energy harvesters”, JRP Energy Harvesting Technical meeting, Turin, Italie, 20-22 nov. 2012.

BOUNOUH A. et al., “Metrology for energy harvesting”, Journées nationales sur la récupération et le stockage d’énergie pour l’alimentation des microsystèmes autonomes, Paris, France, 18-19 nov. 2010.

Les travaux du LNE ont été cités dans les revues de presse suivantes :

MEMS mechanics measured electronically”, Electronics Weekly,
http://www.electronicsweekly.com/news/research/mems-mechanics-measured-electrically-2013-05/

 “New technique for MEMS power measurement”, Engineering & Technology,
http://eandt.theiet.org/news/2013/may/mems-lne.cfm

New Method to Precisely Measure MEMS Output”, Azonano, http://www.azonano.com/news.aspx?newsID=27357

Unveiling the First Precise MEMS Output Measurement Technique”, Red Orbit,
http://www.redorbit.com/news/technology/1112846304/first-precise-mems-output-measurement-technique-051413/

 “First precise MEMS output measurement technique unveiled”,
R&D Magazine, http://www.rdmag.com/news/2013/05/first-precise-mems-output-measurement-technique-unveiled
Nanowerk, http://www.nanowerk.com/news2/newsid=30486.php
Science newsline, http://www.sciencenewsline.com/articles/2013051417570011.html
Science Daily, http://www.sciencedaily.com/releases/2013/05/130514122749.htm
PhysNews, http://www.physnews.com/nano-physics-news/cluster575627274/
Science Codex, http://www.sciencecodex.com/first_precise_mems_output_measurement_technique_unveiled-112144.

Partenaires

Partenaires du JRP-ENG02 :

  • PTB (Allemagne),
  • CMI (République Tchèque),
  • INRIM (Italie),
  • LNE (France),
  • MIKES (Finlande),
  • NPL (Royaume-Uni),
  • SIQ (Slovénie)

Partenaires du LNE :

  • ESIEE,
  • TIMA,
  • LAAS,
  • Thales,
  • Coventor