Thèse soutenue en 2016 - Domaine Temps-Fréquence

Résumé de la thèse

Le travail présenté dans ce manuscrit porte sur l’avancement de l’expérience FORCA-G (FORce de CAsimir et Gravitation à courte distance) dont le but est la mesure par interférométrie atomique de forces à courte distance entre un atome, piégé dans un réseau optique vertical, et une surface. Réalisée à l’aide de transitions Raman stimulées, la séparation spatiale et cohérente des paquets d’onde atomique sur des puits adjacents du réseau permet de mesurer, après recombinaison, la différence d’énergie entre ces puits, liée à l’incrément d’énergie potentielle de pesanteur : la fréquence de Bloch nB. Pour de faibles densités atomiques, il est démontré une sensibilité court terme à 1 s de $\genfrac{}{}{1pt}{}{\delta v}{v_{B}}$ =1,8x10⁻⁶ à l’état de l’art des capteurs de forces à atomes piégés. La mise en place d’un système de refroidissement évaporatif, afin d’augmenter le nombre d’atomes par puits, permet désormais d’explorer des régimes de fortes densités atomiques où les interactions ne peuvent être négligées. Pour des densités de 1011 − 1012 atomes/cm3, il est montré qu’un phénomène d’auto-synchronisation des spins entre en compétition avec le mécanisme d’écho de spin. L’impact de ce phénomène sur le contraste et la fréquence mesurée est étudié dans un interféromètre où les deux paquets d’onde occupent le même puits. Des premières mesures sont ensuite effectuées dans le régime où les paquets d’onde sont séparés. Elles montrent un comportement différent qui reste à modéliser. Enfin, il est montré que le protocole de mesure permet de s’affranchir des biais collisionnels : les interactions atomiques limitent la sensibilité du capteur de force sans limiter son exactitude.

Mots clés

interférométrie atomique, Casimir-Polder, atomes ultra-froids, capteur inertiel, réseau optique, auto-synchronisation des spins