Thèse soutenue en 2017 - Domaine Temps-Fréquence

Résumé de la thèse

Cette thèse porte sur le développement d’un dispositif laser à 1,54 µm, triplé en fréquence et stabilisé sur une transition hyperfine de l’iode moléculaire au voisinage de 514 nm.

Une partie importante de ce travail est consacrée au triplage de la fréquence d’une diode laser à 1,54 µm, en utilisant deux cristaux non linéaires de Niobate de lithium en structure guide d’onde (PPLN), fibrés. Une efficacité de conversion non linéaire P3w/Pw > 36 % a été obtenue, constituant le meilleur rendement jamais démontré pour un processus de triplage de fréquence en mode continu. Une puissance harmonique de 300 mW a été ainsi générée à 514 nm, à partir d’une puissance fondamentale de 800 mW à 1,54 µm. Le banc optique est totalement fibré, et la puissance électrique totale consommée, nécessaire pour réaliser le triplage de fréquence, n’est que de 20 W. Selon un mode opératoire spécifique, ce dispositif laser permet de fournir simultanément trois radiations intenses, stabilisées en fréquence, à 1,54 µm, 771 nm et 514 nm.

Suite à ce développement, un banc de spectroscopie laser très compact a été mis en place, basé sur une courte cellule en quartz scellée, contenant une vapeur d’iode moléculaire. Une puissance optique < 10 mW dans le vert est suffisante pour détecter les transitions hyperfines de l’iode, de grand facteur de qualité au voisinage de 514 nm (Q > 2×109).

Une stabilité de fréquence de 4,5×10-14 τ-1/2 avec un minimum de 6×10-15 de 50 s à 100 s a été démontrée dans le cadre de cette étude. Cette stabilité de fréquence constitue la meilleure performance jamais conférée à une source laser à 1,5 µm à l’aide d’une vapeur atomique, en utilisant une technique simple d’interrogation sub-Doppler.

Cette étude a permis d’identifier les points clés permettant de mettre en place dans le futur proche, un dispositif laser stabilisé, totalement fibré, d’un volume < 10 L.Ce développement pourrait répondre aux besoins de nombreux projets spatiaux nécessitant des liens optiques ultrastables en fréquence, inter-satellites ou bord-sol, pour la géodésie spatiale (GRICE), la mesure du champ gravitationnel terrestre (GRACE FO, NGGM), la détection d’ondes gravitationnelles (LISA), etc.

Mots clés

métrologie, asservissement en fréquence, horloge optique à iode, laser ultra-stable, optique non linéaire, triplage de fréquence, laser 1,5 µm, laser 514 nm