Le projet MetroSMM a pour but de développer des outils métrologiques (méthodes, instruments, références) pour les microscopes à sonde locale micro-onde couramment utilisés pour les mesures locales d’impédance aux petites échelles. Le projet est focalisé sur le SMM (Scanning Microwave Microscope) qui permet de caractériser les comportements des matériaux entre 0,5 GHz et 20 GHz, et d’en déduire une cartographie de l’impédance complexe d’un dispositif de référence. Un des objectifs particuliers poursuivis est la réduction des incertitudes de mesure de capacité locale à quelques 1 % pour une gamme de valeurs allant de 100 aF à 10 fF.

Objectifs du projet

Développer les outils métrologiques (procédures de mesure, références, moyens d’étalonnage) pour la mesure d’impédance haute fréquence, en particulier pour la mesure de capacité, sur des objets à l’échelle micro- et nanométrique ;

Améliorer la fiabilité et la traçabilité des mesures électriques réalisées par des techniques de microscopie à sonde locale micro-onde (SMM) ;

Quantifier les incertitudes de mesure et déterminer les paramètres d’influence sur les résultats.

Résumé et résultats

Ce projet (MetroSMM) porte sur les techniques de mesure par microscopie en champ proche adaptée aux mesures locales de grandeurs électriques à l’échelle nanométrique, communément appelé microscopie à sonde locale électrique (eSPM). En particulier, le microscope à sonde locale micro-onde (SMM - Scanning Microwave Microscope) permet la mesure d’impédance complexe à haute fréquence. Le SMM est un microscope à force atomique (AFM) associé à un analyseur de réseau vectoriel (VNA - Vector Network Analyser). Globalement, elle consiste en un balayage d’une pointe conductrice sur la surface d’un échantillon permettant d’appliquer un signal électrique micro-onde (jusqu’à 20 GHz) entre la pointe et la surface. À l’issue du balayage, deux informations sont obtenues simultanément : la topographie et une cartographie de propriétés électriques diverses telles que l’impédance, la capacité (de l’ordre de l’attofarad), la conductance et la permittivité du matériau testé. L’avantage de l’utilisation d’un signal de très haute fréquence est la possibilité d’explorer le matériau plus en profondeur et de détecter des défauts de structure par exemple.

Le projet a pour objectif le développement d’outils métrologiques pour les microscopes à sonde locale micro-onde SMM couramment utilisés pour les mesures locales d’impédance aux petites échelles. Le SMM permet de connaître les comportements des matériaux entre 0,5 GHz et 20 GHz et d’en déduire une cartographie d’impédance complexe. Le SMM est un des instruments de la plateforme NAEL du LNE consacrée à la caractérisation métrologique à l’échelle nanométrique de propriétés électriques des matériaux. Les outils développés dans ce projet seront technologiques (fabrication de pointes blindées, fabrication de structures de référence, mise en œuvre d’un système interférométrique) et méthodologiques (mise au point de méthodes d’étalonnage, étude des modèles de mesure avec analyse des paramètres d’influence et des incertitudes de mesure). Le projet vise à réduire les incertitudes de mesure locale de capacité à quelques centièmes, dans des conditions optimales, pour des valeurs d’une centaine d’attofarads à une dizaine de femtofarads.

La méthode de mesure d’une capacité à l’aide d’un SMM est en cours d’étude afin d’analyser et quantifier les paramètres qui influencent les résultats de mesure : position de la pointe, présence d’humidité, type de pointes de mesure... Des nanostructures sont fabriquées spécifiquement par des partenaires et caractérisées dans le cadre de ce projet pour devenir des références de capacité. De nombreuses mesures sont effectuées pour mettre en évidence les difficultés de mesure et évaluer les incertitudes de mesure liées aux méthodes, instruments et références de mesure.

Partenaires & Collaborations

  • Membres du Club Nanométrologie, notamment les fabricants et utilisateurs d’instruments de mesure de SMM
  • Partenaires du projet Européen Euramet/ EMPIR Advent
  • Partenaires du projet Européen Euramet/ EMPIR NanoWires
  • Instituts nationaux de métrologie européens : METAS, PTB, CMI, NPL, VSL, DFM, GUM, INRIM, Aalto, BAM...
  • CEA/Leti
  • IEMN de Lille
  • CNRS/C2N, CNRS/INL, CNRS/LAAS, CNRS/GeePs, LPICM...
  • Société CSI

Publications et communications

Morán-Meza J., Delvallée A., Allal D. and Piquemal F., “A substitution method for capacitance calibration using scanning microwave microscopy”, NanoScale2019, 12th Seminar on Quantitative Microscopy (QM) & 8th Seminar on nanoscale Calibration Standards and Methods, 15-16 Oct. 2019, Braunschweig, Germany, Meas. Sci. Technol., 2020, 31, 074009, DOI : 10.1088/1361-6501/ab82c1.

Morán-Meza J., Delvallée A., Allal D., Piquemal F., Mesures de capacités par microscopie micro-onde à champ proche (SMM), 22e Forum des microscopies à sondes locales, 19-22 mars 2019, Carry-le-Rouet.

PIQUEMAL F., JECKELMANN B., CALLEGARO L., HÄLLSTRÖM J., JANSSEN T.J.B.M., MELCHER J., RIETVELD G., SIEGNER U., WRIGHT P. and ZEIER M., “Metrology in Electricity and Magnetism: EURAMET activities today and tomorrow”, Metrologia, 2017, 54, R1–R24, 10.1088/1681-7575/aa7cae.

GAUTIER B., CHRÉTIEN P., AGUIR K., HOUZÉ F., SCHNEEGANS O., HOFFMANN J., CHEVALIER N., BOROWIK L., DERESMES D., GOURNAY P., MAILLOT P. et PIQUEMAL F., « Techniques de mesure de grandeurs électriques adaptées aux nano-circuits », Tech. de l’Ingénieur, déc. 2016, R1084 v1.

Impacts attendus

  • Progrès dans les développements de nouveaux matériaux et de nouvelles structures microélectroniques par la capacité à maîtriser leurs caractéristiques thermiques et électriques aux échelles nanométriques, en phase de synthèse et d’intégration dans des systèmes complexes ;
  • Développements attendus de nouvelles applications sur la base de nouveaux matériaux comme le graphène 2D, par une meilleure connaissance de leurs propriétés mesurées à l’échelle locale et in situ ;
  • Ouverture d’un champ nouveau pour la métrologie électrique en créant les outils métrologiques spécifiques, méthodes de mesure, étalons, moyens d’étalonnage et de caractérisation, assurant la traçabilité aux SI des mesures électriques réalisées à ces échelles micro- et nanométriques.

Projets connexes

  • Projet européen Euramet/EMPIR-2016 Advent, “Metrology for advanced energy-saving technology in next-generation electronics applications”. http://projects.lne.eu/jrp-advent/
  • « Graphen Flagship », Future and Emerging Technology (FET) Flagship du Programme européen de recherche financé par la Commission Européenne. https://graphene-flagship.eu/project/Pages/default.aspx
  • Un nouveau projet européen connexe à cette thématique a été accepté fin 2020. Il s’agit d’un JRP du programme EMPIR-2020 d’Euramet. Ce JRP Elena « Electrical nanoscale metrology in industry » sera coordonné par le LNE.
  • Projet européen Euramet/EMPIR-2019 NanoWires, “High throughput metrology for nanowire energy harvesting devices”. https://www.ptb.de/empir2020/nanowires/