13 projets
Effet Hall quantique dans le graphène pour la métrologie : SI et technologies quantiques

Ce projet vise à améliorer la dissémination des unités électriques dans le contexte de la révision du SI en 2018 qui promeut la mise en œuvre d’étalons quantiques pour la mise en pratique des unités. Il s’inscrit également dans le contexte de l’essor des applications techniques et industrielles à base du matériau 2D graphène et des technologies quantiques, auquel participe la métrologie électrique fondamentale.

Vers la mise en pratique de la constante de Boltzmann : la température dans les échelles en basses températures

Ce projet vise à mettre en place les références nationales dans le domaine 0,65 K à 24 K, établir l’écart entre T90 et la température thermodynamique mesurée par thermométrie acoustique dans les gaz, entre 0,65 K et 273 K et établir et valider les budgets d’incertitudes sur la réalisation de l’Echelle internationale de température de 1990 (EIT-90) en dessous de 273 K.

Caractérisation du radiomètre cryogénique à de nouvelles longueurs d’onde lasers

Comme la plupart des laboratoires nationaux de métrologie, le LCM utilise un radiomètre cryogénique comme référence nationale pour la mesure de flux énergétique et tous les autres bancs de références pour les mesures des grandeurs radiométriques et photométriques y sont raccordés. Ce projet visait à caractériser un nouvel instrument à toutes les longueurs d'onde d'utilisation pour le raccordements des mesures des rayonnements optiques.

Nouvelles techniques pour assurer la traçabilité de la température au travers de sa dissémination

Ce projet vise à développer de nouvelles techniques avancées pour améliorer la traçabilité de la définition actuelle du kelvin, avant la redéfinition de 2018. Etablir la traçabilité au SI en fonction de la nouvelle définition, afin de supporter la plus large et simple dissémination de l’unité de température vers les utilisateurs finaux.

Ingénierie des états quantiques pour les horloges optiques et les capteurs atomiques (QESOCAS)

La stabilité des horloges atomiques fonctionnant dans le domaine optique est actuellement limitée par deux facteurs qui sont le bruit de fréquence du laser utilisé pour sonder le système atomique et le bruit de projection quantique qui intervient lors de la détection de l'état de ce système. Ce projet européen QESOCAS porte sur l'exploitation de l'ingénierie quantique en métrologie pour améliorer les performances des horloges et des capteurs atomiques.

Développement d'une horloge optique à atomes de mercure

La limite d’exactitude prévisible des fontaines atomiques autour de 10-16, l'avènement des peignes de fréquence optique ouvrant des perspectives considérables à la métrologie des fréquences optiques et le potentiel de surpasser très largement les fontaines atomiques "classiques" avec une nouvelle génération d’horloges dans le domaine optique ont conduit  le LNE-SYRTE à s'engager dans le développement d'une  horloge optique à atomes de mercure, avec l'objectif d'atteindre une exactitude de quelques 10-17, voire même de s'approcher de 1

Ponts numériques pour la métrologie des impédances

Ce projet a pour but d’élargir nos capacités de raccordement des mesures d’impédance électrique, tant du point de vue de la nature de l’impédance mesurée que du point de vue de l’incertitude de mesure, par la mise en place de ponts numériques de comparaison dans la chaîne de raccordement aux étalons nationaux quantiques de mesure électrique.